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Abstract

The main goal of this paper is to de�ne the Chow weight structure

wChow for the category DMc(S) of (constructible) Beilinson motives
over any excellent separated �nite-dimensional base scheme S (this is
the version of Voevodsky's motives over S described by Cisinski and
Deglise). We also study the functoriality properties of wChow (they
are very similar to those for weights of mixed complexes of sheaves, as
described in �5 of [BBD82]).

As shown in a preceding paper, (the existence of) wChow auto-
matically yields a certain exact conservative weight complex functor
DMc(S) → Kb(Chow(S)). Here Chow(S) is the heart of wChow; it
is 'generated' by motives of regular schemes that are projective over
S. We also obtain that K0(DMc(S)) ∼= K0(Chow(S)) (and de�ne a
certain 'motivic Euler characteristic' for S-schemes).

Besides, we obtain (Chow)-weight spectral sequences and �ltrations
for any (co)homology of motives; we discuss their relation with Beilin-
son's 'integral part' of motivic cohomology and with weights of mixed
complexes of sheaves. For the study of the latter we also introduce a
new formalism of relative weight structures.
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Introduction

The goal of this paper is to prove (independently from [Heb11]) that the
Chow weight structure wChow (as introduced in [Bon10a] for Voevodsky's
motives over a perfect �eld k) can also be de�ned for the category DMc(S)
of motives with rational coe�cients over any ('reasonable') base scheme S
(in [CiD09], where this category was described and studied, DMc(S) was
called the category of Beilinson motives; one can also consider the 'big' cat-
egory of S-motives DM(S) ⊃ DMc(S) here). The heart HwChow of wChow
is 'generated' by the motives of regular schemes that are projective over S
(tensored by Q(n)[2n] for all n ∈ Z). We also study the functoriality proper-
ties of wChow (they are very similar to the functoriality of weights for mixed
complexes of sheaves, as described in �5 of [BBD82]).

As was shown in [Bon10a], the existence of wChow yields several nice con-
sequences. In particular, there exists a weight complex functor t : DMc(S)→
Kb(Chow(S)), as well as Chow-weight spectral sequences and �ltrations, and
virtual t-truncations for any (co)homological functor H : DMc(S)→ A.

We also relate the weights for S-motives with the 'integral part' of mo-
tivic cohomology (as constructed in [Sch00]; cf. �2.4.2 of [Bei85]), and with
the weights of mixed complexes of sheaves (as de�ned in [BBD82] and in
[Hub97]). In order to study the latter we introduce a new formalism of
relative weight structures.
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Besides, we prove that K0(DMc(S)) ∼= K0(Chow(S)), and de�ne a cer-
tain 'motivic Euler characteristic' for S-schemes.

Now we (try to) explain why the concept of a weight structure is impor-
tant for motives. Recall that weight structures are natural counterparts of
t-structures for triangulated categories; they allow 'decomposing' objects of a
triangulated C into Postnikov towers whose 'factors' belong to the heart Hw
of w. Weight structures were introduced in [Bon10a] (and independently in
[Pau08]). They were thoroughly studied and applied to motives (over perfect
�elds) in [Bon10a]; in [Bon10b] a Gersten weight structure for a certain cate-
gory Ds ⊃ DM eff

gm (k) was constructed; see also the survey preprint [Bon09s].
The Chow weight structure yields certain weights for any (co)homology of

motives. Note here: 'classical' methods of working with motives often fail (at
our present level of knowledge) since they usually depend on (various) 'stan-
dard' motivic conjectures. In particular, the 'classical' way to de�ne weights
for a motif M is to construct a motif Ms such that H i(Ms) ∼= WsH

i(X) (for
all i ∈ Z and a �xed s; here H is either singular or étale cohomology, and
Ws(−) denotes the s-th level of the weight �ltration for the corresponding
mixed Hodge structure or mixed Galois module). It is scarcely possible to do
this without constructing a certain motivic t-structure for DM(−) (whose
existence is very much conjectural at the moment). For instance, in order to
�nd such Ms for motives of smooth projective varieties one requires the so-
called Chow-Kunneth decompositions; hence this is completely out of reach
at our present level of knowledge.

The usage of weight structures (for motives) allows one to avoid these di�-
culties completely. To this end instead ofH i(Ms) one considers Im(H i(wChow≥−s−iM)→
H i(wChow≥−s−i−1M)) (this is the corresponding virtual t-truncation of H ap-
plied to M ; see �A.3 below). Here wChow≥rM for r ∈ Z are certain motives
which can be (more or less) explicitly described in terms of M ; note in con-
trast that there are no general conjectures that allow constructing the mo-
tivic t-truncations and Chow-Kunneth decompositions explicitly. Whereas
this approach is somewhat 'cheating' for pure motives (since it usually gives
no new information on their cohomology), it yields several interesting results
on mixed motives and their (co)homology. The �rst paper somewhat related
to this approach is [GiS96] (its main result was generalized in [GiS09]); there
a weight complex functor that is essentially a (very) partial case of 'our'
one was introduced (and related to cohomology with compact support of
varieties).

Another example when constructions naturally coming from weight struc-
tures yield interesting results is described in �3.3 below.

Now we discuss the relation of our paper to some other articles on relative
motives.
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This text was written independently from the recent article [Heb11] (that
appeared somewhat earlier) on the same subject. We describe similarities
and distinctions between Hebert's paper and our paper. In the current paper
we introduce two di�erent constructions wChow. The �rst one (see Theorem
2.1.1) is based on Theorem 4.3.2(II) of [Bon10a]; the same method was also
used in (Theorem 3.3 of) [Heb11] (so, the plans of the proof coincide). In
order to apply it one has to specify HwChow and prove that it is 'negative'
in DMc(S) (i.e., certain morphism groups are zero). Now, our description
of HwChow is just slightly distinct from the one of ibid. The two proofs of
negativity are substantially di�erent. Our version of the statement is Lemma
1.1.4(I1); in the opinion of the author its proof is simpler than the one of the
(parallel) Theorem 3.2 of [Heb11]. Our statement also contains a formula for
certain non-zero (and 'interesting') morphism groups. On the other hand, loc.
cit. has a serious advantage over our result: in the notation of our Lemma,
it does not require f and g to be quasi-projective. As a result, Theorem
3.7 of [Heb11] describes the functoriality properties of wChow with respect
to not necessarily quasi-projective morphisms in contrast to our Theorem
2.2.1(II) (whereas the proofs of these two theorems are quite similar; another
distinction is that we do not study the behaviour of wChow under tensor
products and inner homomorphisms).

The second de�nition of wChow is given in �2.3; it has no analogue in
[Heb11] (and also in the papers that we mention below; yet note that the
methods of the proof of the functoriality properties of the '�rst' construc-
tion of wChow easily yield the proof of Proposition 2.3.5 also). The idea of
the second de�nition is to start with the 'classical' de�nition of Chow mo-
tives over perfect �elds, and 'glue' the corresponding weight structures into
a weight structure over an arbitrary excellent separated �nite-dimensional
S (that is not necessarily reasonable in the sense of De�nition 1.1.1 below).
Since the residue �elds of S do not have to be perfect, in �2.3 we have to
consider compositions of smooth projective morphisms with �nite universal
homeomorphisms. The advantage of the gluing construction is that it works
over a wider class of base schemes; on the other hand it does not yield an
explicit description of (the whole) HwChow. Note also that both smooth pro-
jective morphisms and �nite universal homeomorphisms yield (higher) étale
direct image functors that respect the local constancy of sheaves; so their
consideration is related with the study of 'explicit constructibility' for the
étale (co)homology of motives.

The author should also note that he would have probably not noticed that
the category Chow(S) = HwChow has a nice description (over a reasonable S)
if not for the papers [CoH00] and [GiS09]. In [CoH00] the de�nition of Chow
motives over S was given as a part of a large program of study of relative
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motives and intersection cohomology of varieties (that relies on several hard
'motivic' conjectures). In [GiS09] certain analogues of (our) Chow motives
were used in order to de�ne (a sort of) weight complexes for S-schemes (only
for one-dimensional S; cf. �3.1 below). Yet note that these two articles do
not treat (any) triangulated categories of 'mixed' motives over S; hence it is
di�cult to apply them to cohomology of 'general' (�nite type) S-schemes.

This paper (also) bene�ted from [Sch12]. In ibid. a 'mixed motivic' de-
scription of Beilinson's 'integral part' of motivic cohomology (as constructed
in [Sch00]; see also �2.4.2 of [Bei85]) was proposed. The formulation of the
main result of [Sch12] uses the so-called intermediate extensions of mixed
motives; so it heavily relies on the (conjectural!) existence of a 'reasonable'
motivic t-structure for DMc(S); note that we describe an alternative con-
struction of this 'part' that does depend on any conjectures (in �3.3 below;
our construction vastly generalizes the one Scholl).

Lastly, we note that several of the results of the current paper were applied
in [Bon11], where the existence of the motivic t-structure for DMc(S) and
of certain 'weights' for its heart were reduced to (certain) standard motivic
conjectures over universal domains. Besides, analogues of some of the results
of the current paper for motives with integral coe�cients were proved in
[Bon13].

Now we list the contents of the paper. More details can be found at the
beginnings of sections.

In �1 we recall the basic properties of Beilinson motives and weight struc-
tures. Most of the statements of the section are contained in [CiD09] and
[Bon10a]; yet we also prove some new results.

In �2 we de�ne the category Chow(S) of Chow motives over S (re-
lated de�nitions can be found in [CoH00], [Heb11], and [GiS09]). By def-
inition, Chow(S) ⊂ DMc(S); since Chow(S) is also negative in it and gen-
erates it (if S is 'reasonable') we immediately obtain (using Theorem 4.3.2
of [Bon10a]) that there exists a weight structure wChow on DMc(S) whose
heart is Chow(S). Next we study the 'functoriality' of wChow (with respect to
the functors of the type f ∗, f∗, f !, f!, for f being a quasi-projective or, more
generally, a smoothly embeddable morphism of schemes). Our functoriality
statements are parallel to the 'stabilities' 5.1.14 of [BBD82] (we 'explain'
this similarity in the succeeding section). We also prove that Chow motives
can be 'lifted from open subschemes up to retracts'; this statement could be
called (a certain) 'motivic resolution of singularities'. Next we prove that
wChow can be described 'pointwisely' (cf. �5.1.8 of [BBD82]). Besides, we
describe an alternative method for the construction of wChow (over arbitrary
excellent separated �nite-dimensional schemes; these don't have to be rea-
sonable). This method uses strati�cations and 'gluing' of weight structures;
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it makes this part of the paper somewhat parallel to the study of weights of
mixed complexes of sheaves in �5 of [BBD82].

�3 is dedicated to the applications of our main results. The existence
of wChow automatically yields the existence of a conservative exact weight
complex functor DMc(S)→ Kb(Chow(S)), and the fact that K0(DMc(S)) ∼=
K0(Chow(S)). We also de�ne a certain 'motivic Euler characteristic' for S-
schemes.

Next we recall that wChow yields functorial Chow-weight spectral sequences
and �ltrations. A very partial case of Chow-weight �ltrations yields Beilin-
son's 'integral part' of motivic cohomology. Chow-weight spectral sequences
yield the existence of weight �ltrations for 'perverse étale homology' of mo-
tives over �nite type Q-schemes (this is not automatic for mixed perverse
sheaves in this setting). We study in more detail the perverse étale homol-
ogy of motives when S = X0 is a variety over a �nite �eld Fq. It is well known
that mixed complexes of sheaves start to behave better if we extend scalars
from Fq to F (this is the algebraic closure of Fq), i.e., pass to sheaves over
X = X0×Spec Fq Spec F. We (try to) axiomatize this situation and introduce
the concept of a relative weight structure. Relative weight structures have
several properties that are parallel to properties of 'ordinary' weight struc-
tures. The category Db

m(X0) (of mixed complexes of sheaves) possesses a rel-
ative weight structure whose heart is the class of (pure) complexes of sheaves
of weight 0. Besides, the étale realization functor DMc(X0) → Db

m(X0) is
weight-exact.

In the Appendix we recall the de�nition of a t-structure adjacent to a
weight structure. Then we prove the existence of a (Chow) t-structure tChow
for DM(S) that is adjacent to the Chow weight structure for it. We also
study the functoriality of tChow and relate it with virtual t-truncations (for
cohomological functors from DMc(S)).

The author is deeply grateful to prof. F. Deglise, prof. D. Hébert, prof.
M. Levine, prof. I. Panin, and to the referees for their helpful comments. He
would also like to express his gratitude to the o�cers and the guests of the
Max Planck Institut für Mathematik, as well as to prof. M. Levine and to
the Essen University for the wonderful working conditions during the work
on this paper.

Notation. Ab is the category of abelian groups.
For categories C,D we write C ⊂ D if C is a full subcategory of D.
For a category C, X, Y ∈ ObjC, we denote by C(X, Y ) the set of C-

morphisms from X to Y . We will say that X is a retract of Y if idX can be
factored through Y . Note: if C is triangulated or abelian then X is a retract
of Y if and only if X is its direct summand.
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For an additive D ⊂ C the subcategory D is called Karoubi-closed in C
if it contains all retracts of its objects in C. The full subcategory of C whose
objects are all retracts of objects of D (in C) will be called the Karoubi-
closure of D in C.

M ∈ ObjC will be called compact if the functor C(M,−) commutes with
all small coproducts that exist in C. In this paper (in contrast with the
previous ones) we will only consider compact objects in those categories that
are closed with respect to arbitrary small coproducts.

C below will always denote some triangulated category; usually it will be
endowed with a weight structure w (see De�nition 1.2.1 below).

We will use the term 'exact functor' for a functor of triangulated cate-
gories (i.e., for a functor that preserves the structures of triangulated cat-
egories). We will call a covariant (resp. contravariant) additive functor
H : C → A for an abelian A homological (resp. cohomological) if it con-
verts distinguished triangles into long exact sequences.

For f ∈ C(X, Y ), X, Y ∈ ObjC, we will call the third vertex of (any)

distinguished triangle X
f→ Y → Z a cone of f ; recall that distinct choices

of cones are connected by (non-unique) isomorphisms.
We will often specify a distinguished triangle by two of its morphisms.
For a set of objects Ci ∈ ObjC, i ∈ I, we will denote by 〈Ci〉 the smallest

strictly full triangulated subcategory containing all Ci; for D ⊂ C we will
write 〈D〉 instead of 〈ObjD〉. We will call the Karoubi-closure of 〈Ci〉 in C
the triangulated category generated by Ci.

For X, Y ∈ ObjC we will write X ⊥ Y if C(X, Y ) = {0}. For D,E ⊂
ObjC we will write D ⊥ E if X ⊥ Y for all X ∈ D, Y ∈ E. For D ⊂ C we
will denote by D⊥ the class

{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.

Dually, ⊥D is the class {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}.
We will say that some Ci, i ∈ I, weakly generate C if for X ∈ ObjC we

have: C(Ci[j], X) = {0} ∀i ∈ I, j ∈ Z =⇒ X = 0 (i.e., if {Ci[j]}⊥ contains
only zero objects).

D ⊂ ObjC will be called extension-stable if for any distinguished triangle
A→ B → C in C we have: A,C ∈ D =⇒ B ∈ D.

We will call the smallest Karoubi-closed extension-stable subclass ofObjC
containing D the envelope of D.

Below all schemes will be excellent separated of �nite Krull dimension.
Often our schemes will be reasonable; see De�nition 1.1.1 below.

Morphisms of schemes by default will be of �nite type. We will say that
X/S is smoothly embeddable if it can be embedded into a smooth X ′/S (in
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particular, such an X is quasi-�nite over S). Certainly, any quasi-projective
S-scheme is smoothly embeddable (over S).

We will sometimes need certain strati�cations of a scheme S. Recall that
a strati�cation α is a presentation of S as ∪Sαl , where Sαl , 1 ≤ l ≤ n, are
pairwise disjoint locally closed subschemes of S. Omitting α, we will denote
by jl : Sαl → S the corresponding immersions. We do not demand the closure
of each Sαl to be the union of strata (though we could do this); we will only
assume that each Sαl is open in ∪i≥lSαi .

Below we will identify a Zariski point (of a scheme S) with the spectrum
of its residue �eld.

1 Preliminaries: relative motives and weight

structures

In �1.1 we recall some of basic properties of Beilinson motives over S (as
considered in [CiD09]; we also deduce certain results that were not stated in
ibid. explicitly).

In �1.2 we recall some basics of the theory of weight structures (as devel-
oped in [Bon10a]); we also prove some new lemmas on the subject.

1.1 Beilinson motives (after Cisinski and Deglise)

We list some of the properties of the triangulated categories of Beilinson
motives (this is the version of relative Voevodsky's motives with rational
coe�cients described by Cisinski and Deglise). Sometimes we will need the
following restriction on schemes.

De�nition 1.1.1. We will call a separated scheme S reasonable if there exists
an excellent separated scheme S0 of dimension lesser than or equal to 2 such
that S is of �nite type over S0.

Proposition 1.1.2. Let X, Y be (excellent separated �nite dimensional)
schemes; f : X → Y is a �nite type morphism.

1. For any X a tensor triangulated Q-linear category DM(X) with the
unit object QX is de�ned; it is closed with respect to arbitrary small
coproducts.

DM(X) is the category of Beilinson motives over X, as described (and
thoroughly studied) in �14�15 of [CiD09].
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2. The (full) subcategory DMc(X) ⊂ DM(X) of compact objects is ten-
sor triangulated, and QX ∈ ObjDMc(S). DMc(X) weakly generates
DM(X).

3. All DM(X) and DMc(X) are idempotent complete.

4. For any f the following functors are de�ned: f ∗ : DM(Y ) � DM(X) :
f∗ and f! : DM(X) � DM(Y ) : f !; f ∗ is left adjoint to f∗ and f! is
left adjoint to f !.

We call these the motivic image functors. Any of them (when f
varies) yields a 2-functor from the category of (separated �nite-dimensional
excellent) schemes with morphisms of �nite type to the 2-category of tri-
angulated categories. Besides, all motivic image functors preserve com-
pact objects (i.e., they could be restricted to the subcategories DMc(−));
they also commute with arbitrary (small) coproducts.

5. For a Cartesian square of �nite type morphisms

Y ′
f ′−−−→ X ′yg′ yg

Y
f−−−→ X

we have g∗f!
∼= f ′! g

′∗ and g′∗f
′! ∼= f !g∗.

6. f ∗ is symmetric monoidal; f ∗(QY ) = QX .

7. For any X there exists a Tate object Q(1) ∈ ObjDMc(X); tensoring by
it yields an exact Tate twist functor −(1) on DM(X). This functor is
an auto-equivalence of DM(X); we will denote the inverse functor by
−(−1).

Tate twists commute with all motivic image functors mentioned (up to
an isomorphism of functors).

Besides, for X = P1(Y ) there is a functorial isomorphism f!(QP1(Y )) ∼=
QY

⊕
QY (−1)[−2].

8. f∗ ∼= f! if f is proper; f !(−) ∼= f ∗(−)(s)[2s] if f is smooth (everywhere)
of relative dimension s.

If f is an open immersion, we just have f ! = f ∗.

9. If i : S ′ → S is an immersion of regular schemes everywhere of codi-
mension d, then QS′(−d)[−2d] ∼= i!(QS).
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10. If i : Z → X is a closed immersion, U = X \ Z, j : U → X is the
complementary open immersion, then the motivic image functors yield
a gluing datum for DM(−) (in the sense of �1.4.3 of [BBD82]; see
also De�nition 8.2.1 of [Bon10a]). That means that (in addition to the
adjunctions given by assertion 4) the following statements are valid.

(i) i∗ ∼= i! is a full embeddings; j∗ = j! is isomorphic to the localization
(functor) of DM(X) by i∗(DM(Z)).

(ii) For any M ∈ ObjDM(X) the pairs of morphisms j!j
!(M)→M →

i∗i
∗(M) and i!i

!(M)→M → j∗j
∗(M) can be completed to distinguished

triangles (here the connecting morphisms come from the adjunctions of
assertion 4).

(iii) i∗j! = 0; i!j∗ = 0.

(iv) All of the adjunction transformations i∗i∗ → 1DM(Z) → i!i! and
j∗j∗ → 1DM(U) → j!j! are isomorphisms of functors.

11. For the subcategories DMc(−) ⊂ DM(−) the obvious analogue of the
previous assertion is ful�lled.

12. If f is a �nite universal homeomorphism, f ∗ is an equivalence of cate-
gories.

13. If S is reasonable (see De�nition 1.1.1), DMc(S) (as a triangulated
category) is generated by {g∗(QX)(r)}, where g : X → S runs through
all projective morphisms (of �nite type) such that X is regular, r ∈ Z.

14. Let S be a scheme which is the limit of an essentially a�ne (�lter-
ing) projective system of schemes Sβ (for β ∈ B). Then DMc(S) is
isomorphic to the 2-colimit of the categories DMc(Sβ); in these iso-
morphisms all the connecting functors are given by the corresponding
motivic inverse image functors (cf. Remark 1.1.3(2) below).

15. If X is regular (everywhere) of dimension d, i : Z → X is a closed em-
bedding, p, q ∈ Z, then DM(X)(QX , i!i

!(QZ)[p](q)) ∼= DM(Z)(QZ , i
!(QX)(q)[p])

is isomorphic to Chowd−q(Z, 2q−p)⊗Q (which we de�ne as Grγd−qK
′
2q−p(Z)⊗

Q). In particular, this morphism group is zero if p > 2q.

Proof. Almost all of these properties of Beilinson motives are stated in (part
C of) the Introduction of ibid.; the proofs are mostly contained in �1, �2,
�14, and �15 of ibid.

So, we will only prove those assertions that are not stated in ibid. (ex-
plicitly).
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For (3): Since DM(X) is closed with respect to arbitrary small coprod-
ucts, it is idempotent complete by Proposition 1.6.8 of [Nee01]. Since a
retract of a compact object is compact also, DMc(X) is also idempotent
complete.

Since i! = i∗ if i is an open immersion, and i∗(QS) = QS′ , it su�ces to
prove (9) for i being a closed immersion. In this case it is exactly Theorem
4 of [CiD09].

We should also prove (11). Assertion 10 immediately yields everything
except the fact that the (categoric) kernel of j∗ : DMc(X) → DMc(U)
is contained in i∗(DMc(Z)). So, we should prove that i∗(ObjDM(Z)) ∩
ObjDMc(X) = i∗(ObjDMc(Z)). This is easy, since i∗i∗ ∼= 1DM(Z) and i∗i∗

preserves compact objects.
Assertion 12 is given by Proposition 2.1.9 of [CiD09] (note that we can

apply the result cited by Theorem 14.3.3 of ibid.).
Assertion 13 is immediate from Proposition 15.2.3 of ibid.
It remains to prove (15). Combining (13.4.1.3) and Corollary 14.2.14 of

ibid., we obtain that the groups in question are isomorphic to the q-th factor
of the γ-�ltration of KZ

2q−p(X) ⊗ Q (of the K-theory of X with support in
Z). By Theorem 7 of [Sou85], this is the exactly the d − q-th factor of the
γ-�ltration of K ′2q−p(Z)⊗Q.

Remark 1.1.3. 1. In [CiD09] for a smooth f : X → Y the object f!f
!(QY )

was denoted byMY (X) (cf. also De�nition 1.3 of [Sch12]; yet note that in
loc. cit. cohomological motives are considered, this interchanges ∗ with ! in
the notation for motivic functors). We will not usually need this notation
below (yet cf. Remarks 2.1.2(1) and 3.3.2(4)).

2. In [CiD09] the functor f ∗ was constructed for any morphism f not
necessarily of �nite type; it preserves compact objects (see Theorem 15.2.1(1)
of ibid.). Besides, for such an f and any �nite type g : X ′ → X we have an
isomorphism f ∗g!

∼= g′!f
′∗ (for the corresponding f ′ and g′; cf. part 5 of the

proposition).
Below the only morphisms of in�nite type that we will be interested in

are limits of immersions (more precisely, for a Zariski point K of a scheme S
we will consider the natural morphism jK : K → S; cf. Notation).

Now note: if f is a pro-open immersion, then one can de�ne f ! = f ∗.
So, one can also de�ne j!

K that preserves compact objects (cf. also �2.2.12 of
[BBD82]). The system of these functors satisfy the second assertion in part
5 of the proposition (for a �nite type g).

3. If f is a �nite universal homeomorphism, then f ∗ is an equivalence of
categories by assertion 12 of our proposition. Hence its right adjoint f∗ is an
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equivalence also. Since f ! is right adjoint to f! = f∗, we conclude that f! and
f ! are equivalences too.

Similarly we obtain that f ∗QY
∼= f !QY

∼= QX and f∗QX = f!QX
∼= QY .

4. Most of the properties of Beilinson motives (as listed above) also hold
for various 'sheaf-like' categories. In particular, the methods of the current
paper could probably be used in order to prove the existence of the weight
structure w constructed in Proposition 2.3(I) of [Bon12] for M. Saito's mixed
Hodge modules (see [Sai89]). Yet the properties of mixed Hodge modules
listed in �1 of ibid. yield the existence of w immediately.

5. A nice concise exposition of the properties of Beilinson motives (that
also follows [CiD09]) can be found in �2 of [Heb11].

The following statements were not proved in [CiD09] explicitly; yet they
follow from Proposition 1.1.2 easily. Below we will mostly need assertion I1
in the case when g is projective; note that in this case g∗(QY ) ∼= g!(QY ).

Lemma 1.1.4. I1. Let Y be a regular scheme everywhere of dimension d;
let f : X → S and g : Y → S be smoothly embeddable morphisms (see the
Notation), r, b, c ∈ Z.

Then DM(S)(f!(QX)(b)[2b], g∗(QY )(c)[r + 2c]) ∼= CHd+b−c(X ×S Y,−r)
(cf. Proposition 1.1.2(15) for the de�nition of the latter). In particular,
f!(QX)(b)[2b] ⊥ g∗(QY )(c)[r + 2c] if r > 0.

2. Let i : S ′ → S be an immersion of regular schemes everywhere of
codimension d; let g be smooth. Then for Y ′ = YS′ and g′ = gS′ we have
i!g∗(QY ) ∼= g′∗(QY ′)(−d)[−2d].

II Let S = ∪Sαl be a strati�cation. Then for any M,N ∈ ObjDM(S)
there exists a �ltration of DM(S)(M,N) by certain subfactors of DM(Sαl )(j∗l (M), j!

l(N)).

Proof. I1. By Proposition 1.1.2(6), we can assume that b = c = 0 (to this
end we should possibly replace X and Y by (P1)n(X) and (P1)m(Y ) for some
n,m ≥ 0).

Next, we have DM(S)(f!(QX), g∗(QY )[r]) ∼= DM(Y )(g∗f!(QX),QY [r])
since g∗ is left adjoint to g∗. Applying part 5 of loc. cit., we obtain that the
group in question is isomorphic to

DM(Y )(f ′! g
′∗(QX),QY [r]) = DM(Y )(f ′! (QX×SY ),QY [r])

(here f ′ = fY ).
We denote X×S Y by Z. Let P be a smooth Y -scheme containing Z as a

closed subscheme; we denote by i : Z → P and p : P → Y the corresponding
morphisms. We can assume that P is everywhere of some dimension d′ over
Y .

12



Then we have

DM(Y )(f ′! (QZ),QY [r]) = DM(S)(p!i!(QZ),QY [r]) ∼= DM(P )(i!(QZ), p!(QY )[r])

(here we apply the adjunction of p! with p!). By part 8 of loc. cit., the
group in question is isomorphic to DM(P )(i!(QZ), p∗(QY )(d′)[r + 2d′]) ∼=
DM(P )(i!(QZ),QP (d′)[r + 2d′]). It remains to apply part 15 of loc. cit.

2. i!g∗(QY ) ∼= g′∗i
′!(QY ) by part 5 of loc. cit. (here i′ = iY ). Hence using

part 9 of loc. cit. we obtain the result.
II We prove the statement by induction on the number of strata. By

de�nition (see the Notation section) Sα1 is open in S, and the remaining Sαl
yield a strati�cation of S \Sα1 . We denote S \Sα1 by Z, the (open) immersion
Sα1 → S by j and the (closed) immersion Z → S by i.

Now we apply part 10 of loc. cit. We obtain a (long) exact sequence · · · →
DM(S)(i∗i

∗(M), N) → DM(S)(M,N) → DM(S)(j!j
!(M), N) → . . . . The

adjunctions of functors yield DM(S)(i∗i
∗(M), N) ∼= DM(Z)(i∗(M), i!(N))

and DM(S)(j!j
!(M), N ′) ∼= DM(Sα1 )(j∗(M), j!(N)).

Now, by the inductive assumption the group DM(Z)(i∗(M), i!(N)) has a
�ltration by some subquotients of DM(Sαl )(j∗l (M), j!(N)) (for l 6= 1). This
concludes the proof.

1.2 Weight structures: short reminder

De�nition 1.2.1. I A pair of subclasses Cw≤0, Cw≥0 ⊂ ObjC will be said to
de�ne a weight structure w for C if they satisfy the following conditions:

(i) Cw≥0, Cw≤0 are additive and Karoubi-closed in C (i.e., contain all
C-retracts of their objects).

(ii) Semi-invariance with respect to translations.
Cw≤0 ⊂ Cw≤0[1], Cw≥0[1] ⊂ Cw≥0.
(iii) Orthogonality.
Cw≤0 ⊥ Cw≥0[1].
(iv) Weight decompositions.
For any M ∈ ObjC there exists a distinguished triangle

B →M → A
f→ B[1] (1)

such that A ∈ Cw≥0[1], B ∈ Cw≤0.
II The category Hw ⊂ C whose objects are Cw=0 = Cw≥0 ∩ Cw≤0,

Hw(Z, T ) = C(Z, T ) for Z, T ∈ Cw=0, will be called the heart of w.
III Cw≥i (resp. Cw≤i, resp. Cw=i) will denote Cw≥0[i] (resp. Cw≤0[i],

resp. Cw=0[i]).
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IV We denote Cw≥i ∩ Cw≤j by C [i,j] (so it equals {0} for i > j).
V We will say that (C,w) is bounded if ∪i∈ZCw≤i = ObjC = ∪i∈ZCw≥i.
VI Let C and C ′ be triangulated categories endowed with weight struc-

tures w and w′, respectively; let F : C → C ′ be an exact functor.
F will be called left weight-exact (with respect to w,w′) if it maps Cw≤0

to C ′w′≤0; it will be called right weight-exact if it maps Cw≥0 to C ′w′≥0. F is
called weight-exact if it is both left and right weight-exact.

VII Let H be a full subcategory of a triangulated C.
We will say that H is negative if ObjH ⊥ (∪i>0Obj(H[i])).
VIII We call a category A

B
a factor of an additive category A by its (full)

additive subcategoryB ifObj
(
A
B

)
= ObjA and (A

B
)(M,N) = A(M,N)/(

∑
O∈ObjB A(O,N)◦

A(M,O)).
IX For an additive B we will consider the category of 'formal coprod-

ucts' of objects of B: its objects are (formal)
∐

j∈J Bj : Bj ∈ ObjB, and
Mor(

∐
l∈LBl,

∐
j∈J B

′
j) =

∏
l∈L(

⊕
j∈J B(Bl, B

′
j)); here L, J are index sets.

We will call the idempotent completion of this category the big hull of B.

Remark 1.2.2. 1. If B is a full subcategory of compact objects in an additive
C, and C is idempotent complete and closed with respect to arbitrary small
coproducts, then there exists a natural full embedding of the big hull of B
into C. Note here: if C is triangulated and closed with respect to arbitrary
small coproducts, then it is necessarily idempotent complete (see Proposition
1.6.8 of [Nee01]).

2. A simple (and yet useful) example of a weight structure comes from
the stupid �ltration on the homotopy categories of cohomological complexes
K(B) ⊃ Kb(B) for an arbitrary additive category B. In this case K(B)w≤0

(resp. K(B)w≥0) will be the class of complexes that are homotopy equivalent
to complexes concentrated in degrees ≥ 0 (resp. ≤ 0). The heart of this
weight structure (either for K(B) or for Kb(B)) is the the Karoubi-closure
of B in the corresponding category. We will use the notation K(B)[i,j] below
following De�nition 1.2.1(IV).

3. A weight decomposition (of any M ∈ ObjC) is (almost) never canoni-
cal; still we will sometimes denote (any choice of) a pair (B,A) coming from
in (1) by (w≤0M,w≥1M).

For an l ∈ Z we denote by w≤lM (resp. w≥lM) a choice of w≤0(M [−l])[l]
(resp. of w≥1(M [1− l])[l − 1]).

We will call (any choices of) w≤lM and w≥lM weight truncations of M .
A certain illustration of this notation (in a more general context of relative
weight structure) can be found in Proposition 3.5.3(3) below.

4. In the current paper we use the 'homological convention' for weight
structures; it was previously used in [Heb11], [Wil12], and [Bon12], whereas
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in [Bon10a] and in [Bon10b] the 'cohomological convention' was used. In
the latter convention the roles of Cw≤0 and Cw≥0 are interchanged, i.e., one
considers Cw≤0 = Cw≥0 and Cw≥0 = Cw≤0. So, a complex X ∈ ObjK(B)
whose only non-zero term is the �fth one (i.e., X5 6= 0; cf. De�nition 3.5.1(5)
below) has weight −5 in the homological convention, and has weight 5 in the
cohomological convention. Thus the conventions di�er by 'signs of weights';
K(B)[i,j] is the class of retracts of complexes concentrated in degrees [−j.−i].

Now we recall those properties of weight structures that will be needed
below (and that can be easily formulated). We will not mention more compli-
cated matters (weight spectral sequences and weight complexes) here; instead
we will just formulate the corresponding 'motivic' results below.

Proposition 1.2.3. Let C be a triangulated category.

1. (C1, C2) (C1, C2 ⊂ ObjC) de�ne a weight structure for C if and only if
(Cop

2 , C
op
1 ) de�ne a weight structure for Cop.

2. Let w be a weight structure for C. Then Cw≤0, Cw≥0, and Cw=0 are
extension-stable.

Besides, for any M ∈ Cw≤0 we have w≥0M ∈ Cw=0 (for any choice of
w≥0M).

3. Let w be a weight structure for C. Then Cw≥0 = (Cw≤−1)⊥ and Cw≤0 =
⊥Cw≥1 (see Notation).

4. Suppose that v, w are weight structures for C; let Cv≤0 ⊂ Cw≤0 and
Cv≥0 ⊂ Cw≥0. Then v = w (i.e., the inclusions are equalities).

5. Let w be a bounded weight structure for C. Then w extends to a bounded
weight structure for the idempotent completion C ′ of C (i.e., there exists
a weight structure w′ for C ′ such that the embedding C → C ′ is weight-
exact); its heart is the idempotent completion of Hw.

6. Assume that H ⊂ ObjC is negative and that C be idempotent complete.
Then there exists a unique weight structure w on the Karoubi-closure
T of 〈H〉 in C such that H ⊂ Tw=0. Its heart is the envelope (see
the Notation) of H in C; it is the idempotent completion of H if H is
additive.

7. For the weight structure mentioned in the previous assertion, Tw≤0 is
the envelope of ∪i≤0H[i]; Tw≥0 is the envelope of ∪i≥0H[i].
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8. A composition of left (resp. right) weight-exact functors is left (resp.
right) weight-exact.

9. Let C and D be triangulated categories endowed with weight structures
w and v, respectively. Let F : C � D : G be adjoint functors. Then F
is left weight-exact if and only if G is right weight-exact.

10. Let C and D be triangulated categories endowed with weight structures
w and v, respectively; let w be bounded. Then an exact functor F : C →
D is left (resp. right) weight-exact if and only if F (Cw=0) ⊂ Dv≤0 (resp.
F (Cw=0) ⊂ Dv≥0).

11. Let w be a weight structure for C; let D ⊂ C be a triangulated subcat-
egory of C. Suppose that w yields a weight structure wD for D (i.e.,
ObjD ∩ Cw≤0 and ObjD ∩ Cw≥0 give a weight structure for D).

Then w also induces a weight structure on C/D (the localization, i.e.,
the Verdier quotient of C by D) in the following sense: the Karoubi-
closures of Cw≤0 and Cw≥0 (considered as classes of objects of C/D)
give a weight structure w′ for C/D (note that ObjC = ObjC/D). Be-
sides, there exists a full embedding Hw

HwD
→ Hw′; Hw′ is the Karoubi-

closure of Hw
HwD

in C/D.

12. Suppose that D ⊂ C is a full category of compact objects endowed with
bounded a weight structure w′. Suppose that D weakly generates C; let
C admit arbitrary (small) coproducts. Then w′ can be extended to a
weight structure w for C. Its heart is the big hull of Hw′ (as de�ned
in De�nition 1.2.1(IX)).

13. Let D
i∗→ C

j∗→ E be a part of a gluing datum. This means that D,C,E
are triangulated categories, i∗ and j∗ are exact functors; j∗ is a local-
ization functor, i∗ is an embedding of the categorical kernel of j∗ into
C; i∗ possesses both a left adjoint i∗ and a right adjoint i! (see Chapter
9 of [Nee01]; note that this piece of a datum extends to a datum similar
to that described in Proposition 1.1.2(10)).

Then for any pair of weight structures on D and E (we will denote
them by wD and wE, respectively) there exists a weight structure w
on C such that both i∗ and j∗ are weight-exact (with respect to the
corresponding weight structures). Besides, i! and j∗ are right weight-
exact (with respect to the corresponding weight structures); i∗ and j!

are left weight-exact. Moreover, Cw≥0 = C1 = {M ∈ ObjC : i!(M) ∈
DwD≥0, j

∗(M) ∈ EwE≥0} and Cw≤0 = C2 = {M ∈ ObjC : i∗(M) ∈
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DwD≤0, j
∗(M) ∈ EwE≤0}. Lastly, C1 (resp. C2) is the envelope of

j!(Ew≤0) ∪ i∗(Dw≤0) (resp. of j∗(Ew≥0) ∪ i∗(Dw≥0)).

14. In the setting of the previous assertion, if wD and wE are bounded, then:
w is bounded also; besides, Cw≤0 is the envelope of {i∗(DwD=l), j!(EwE=l), l ≤
0}; Cw≥0 is the envelope of {i∗(DwD=l), j∗(EwE=l), l ≥ 0}.

15. In the setting of assertion 13, the weight structure w described is the
only weight structure for C such that both i∗ and j

∗ are weight-exact.

Proof. Most of the assertions were proved in [Bon10a] (pay attention to
Remark 1.2.2(4)!); see Remark 1.1.2(1), Proposition 1.3.3(3,6,1,2), Lemma
1.3.8, Proposition 5.2.2, Theorem 4.3.2(II) (together with its proof), Remark
4.4.6, Proposition 8.1.1, Theorem 4.5.2, and Theorem 8.2.3 (together with
Remark 8.2.4(1)) of ibid., respectively.

We only have to prove assertions 9, 10, 14, and 15.
(9) follows immediately from assertion 3 (using the de�nition of adjoint

functors).
(10) is immediate from assertion 7 by assertion 2.
If wC and wD are bounded, then w also is by de�nition. The remaining

part of assertion 14 is immediate from Remark 8.2.4(1) of [Bon10a] and
assertion 7.

(15): Suppose that the assumptions of assertion 13 are ful�lled, and con-
sider some weight structure v for C such that i∗ and j∗ are weight-exact.

Since i∗ and j∗ are weight-exact, by assertion 9 we obtain: i! and j∗ are
right weight-exact; i∗ and j! are left weight-exact (with respect to the corre-
sponding weight structures). Hence the class Cv≤0 (resp. Cv≥0) is contained
in C1 (resp. in C2) in the notation of assertion 13. Since the couple (C1, C2)
does yield a weight structure w for C (by loc. cit.), by assertion 4 we obtain
that v = w.

Remark 1.2.4. Part 11 of the proposition can be re-formulated as follows. If
i∗ : D → C is an embedding of triangulated categories that is weight-exact
(with respect to certain weight structures for D and C), an exact functor
j∗ : C → E is equivalent to the localization of C by i∗(D), then there exists
a unique weight structure w′ for E such that j∗ is weight-exact; HwE is the
Karoubi-closure of Hw

i∗(HwD)
(with respect to the natural functor Hw

i∗(HwD)
→ E).
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2 The Chow weight structure: two construc-

tions and basic properties

In �2.1 we de�ne the category Chow(S) of Chow motives over S (similar
de�nitions can be found in [CoH00], [Heb11], and [GiS09]). By our de�nition,
Chow(S) ⊂ DMc(S); since Chow(S) is also negative in it and generates it
(if S is reasonable; here we use the properties of DMc(S) proved in �1.1)
we immediately obtain (by Proposition 1.2.3(7)) that there exists a weight
structure on DMc(S) whose heart is Chow(S).

In �2.2 we study the 'functoriality' of wChow (with respect to functors of
the type f ∗, f∗, f !, and f!, for f being a smoothly embeddable morphism of
schemes). Our functoriality statements are parallel to the 'stabilities' 5.1.14
of [BBD82]; we will explain this similarity in the next section. We also prove
that wChow can be described 'pointwisely' (similarly to �5.1.8 of [BBD82]),
and prove that it is 'continuous' (in a certain sense).

In �2.3 we describe an alternative method for the construction of wChow
for DMc(S) (for an excellent separated �nite-dimensional scheme S that is
not necessarily reasonable). This method uses strati�cations and 'gluing' of
weight structures; this makes this part of the paper very much parallel to the
study of weights of mixed complexes of sheaves in �5 of [BBD82]. Actually,
this method is the �rst one developed by the author (it was �rst proposed in
Remark 8.2.4(3) of [Bon10a], that was in its turn inspired by [BBD82]). We
prove that this alternative method yields the same result as the method of
�2.1 if S is reasonable. This yields some new descriptions of wChow (in this
case); see Remark 2.3.7(2).

2.1 Relative Chow motives; the 'basic' construction of
wChow

We de�ne Chow(S) as the Karoubi-closure of {f!(QX)(r)[2r]} = {f∗(QX)(r)[2r]}
inDMc(S); here f : X → S runs through all �nite type projective morphisms
such that X is regular, r ∈ Z.

Till �2.3 we will assume that all schemes that we consider are reasonable
(see De�nition 1.1.1).

Theorem 2.1.1. I There exists a (unique) weight structure wChow for DMc(S)
whose heart is Chow(S).

II wChow(S) can be extended to a weight structure wbigChow for the whole

DM(S). HwbigChow is the big hull of Chow(S) (as de�ned in De�nition 1.2.1(IX);
see Remark 1.2.2(1)).
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Proof. I By Proposition 1.2.3(6) it su�ces to verify that Chow(S) is nega-
tive and generates DMc(S). The negativity of Chow(S) is immediate from
Lemma 1.1.4(I). Chow(S) generates DMc(S) by Proposition 1.1.2(13).

II Since Chow(S) generates DMc(S), and DMc(S) weakly generates
DM(S) (by part 2 of loc. cit.), Chow(S) weakly generates DM(S).

Hence the assertion follows immediately from assertion I and Proposition
1.2.3(12).

Remark 2.1.2. 1. In particular, the theorem holds for S being the spectrum
of a (not necessarily perfect) �eld k.

For a perfect k the existence of wChow was already proved in �6 of [Bon10a].
Note here that DMc(Spec k) ∼= DMgmQ(k) for a perfect k (in the notation
of loc. cit.; DMgmQ(k) denotes the category of motives with rational co-
e�cients), whereas p!QP (r)[2r] yields a Chow motif over k (for any r ∈ Z
and p : P → Spec k being a smooth projective morphism; recall here that
the 'ordinary' category of Chow motives over k can be fully embedded into
DMgm).

2. Moreover (as was kindly pointed out by the referee) if kp is the per-
fect closure of an arbitrary �eld k, then DMc(Spec kp) ∼= DMc(Spec k); see
Proposition 1.1.2(12).

3. Besides, in [Bon09a] a related di�erential graded 'description' of mo-
tives over a characteristic zero k was given. It was generalized in [Lev09] to
a description of the category of smooth motives over S, when S is a smooth
variety over (a characteristic 0 �eld) k; here the category of smooth mo-
tives is the triangulated category generated by motives of smooth projective
S-schemes.

Note also: the restriction of wChow to smooth motives induces a weight
structure for this category (that is coherent with the 'description' mentioned).

4. Our results would certainly look nicer if we had a description of the
composition of morphisms in Chow(S) (note here that the morphism groups
between 'generating objects' of Chow(S) can be immediately computed using
Lemma 1.1.4(I)). The author conjectures that this composition is compatible
with the ones described �2 of [CoH00] and in �5.2 of [GiS09]. In order to
prove this Levine's method could be quite useful, as well as the description of
DM(S) in terms of qfh-sheaves (see Theorem 16.1.2 of [CiD09]). Moreover,
the methods of [Lev09] could possibly allow giving a 'di�erential graded'
description of the whole DMc(S) (extending the main result of ibid.).

The author plans to study these matters further.
5. In Theorem 3.2 of [Heb11] an orthogonality property (similar to that in

Lemma 1.1.4(I1)) was established for not necessarily smoothly embeddable f
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and g. This yielded that {f!(QX)(r)[2r]} ∈ DMc(S)w=0 for any proper (not
necessarily projective!) f such that X is regular, r ∈ Z, and allowed gen-
eralizing Theorem 2.2.1(II) (below) to not necessarily smoothly embeddable
morphisms.

Note also: in our proof of Lemma 1.1.4(I1) we actually only needed an
embedding of X ×S Y into a regular �nite type S-scheme; this also implies
a certain generalization of Theorem 2.2.1(II) (in particular, we can extend it
to arbitrary �nite type morphisms of schemes that are of �nite type over a
�xed characteristic 0 �eld).

6. If S is not reasonable, we still obtain that Chow(S) is negative. Hence,
there exists a weight structure on 〈Chow(S)〉 whose heart is Chow(S) (since
Chow(S) is idempotent complete). The problem is that we do not know
whether 〈Chow(S)〉 is the whole DMc(S) (though this is true for motives
over generic points of S, since those are reasonable; cf. also part 1 of this
remark).

One can also prove the existence of a certain analogue of the Chow weight
structure over a not necessarily reasonable scheme S; see �2.3 below. The
main disadvantage of this method is that it does not yield an 'explicit' de-
scription of HwChow (though HwChow ⊃ Chow(S); cf. Remark 2.3.7(3)).

2.2 Functoriality of wChow

Now we study (left and right) weight-exactness of the motivic image functors.
These statements are very similar to the properties of pure complexes of con-
structible sheaves. This is not surprising; cf. �3.6 below. In this subsection
S,X, Y (and hence also Z, U , and all Sαl ) will be reasonable.

Theorem 2.2.1. I The functor −(1)[2](= ⊗Q(1)[2]) and its inverse −(−1)[−2] :
DMc(S)→ DMc(S) are weight-exact with respect to wChow for any S.

II Let f : X → Y be a smoothly embeddable morphism of schemes.
1. f ! and f∗ are right weight-exact; f ∗ and f! are left weight-exact.
2. Suppose moreover that f is smooth. Then f ∗ and f ! are also weight-

exact.
3. Moreover, f ∗ is weight-exact for f being either (i) a �nite universal

homeomorphism or (ii) a (�ltering) projective limit of smooth morphisms
such that the corresponding connecting morphisms are smooth a�ne. In case
(i) f ! is weight-exact also.

III Let i : Z → X be a closed immersion; let j : U → X be the comple-
mentary open immersion.

1. Chow(U) is the idempotent completion of the factor (in the sense of
De�nition 1.2.1(VIII)) of Chow(X) by i∗(Chow(Z)).
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2. For M ∈ ObjDMc(X) we have: M ∈ DMc(X)wChow≥0 (resp. M ∈
DMc(X)wChow≤0) if and only if j

!(M) ∈ DMc(U)wChow≥0 and i
!(M) ∈ DMc(Z)wChow≥0

(resp. j∗(M) ∈ DMc(U)wChow≤0 and i∗(M) ∈ DMc(Z)wChow≤0).
IV Let S = ∪Sαl be a strati�cation, jl : Sαl → S are the corresponding

immersions. Then for M ∈ ObjDMc(S) we have: M ∈ DMc(S)wChow≥0

(resp. M ∈ DMc(S)wChow≤0) if and only if j!
l(M) ∈ DMc(S

α
l )wChow≥0 (resp.

j∗l (M) ∈ DMc(S
α
l )wChow≤0) for all l.

V 1. For any S we have QS ∈ DMc(S)wChow≤0.
2. If Sred is regular, then QS ∈ DMc(S)wChow=0.

Proof. I Since wChow is bounded for any base scheme, in order to prove that
a motivic image functor is weight-exact it su�ces to prove that it preserves
Chow motives; see Proposition 1.2.3(10). The assertion follows immediately.

II Let f be a smooth morphism. Then we obtain: f ∗(DMc(Y )wChow=0) ⊂
DMc(X)wChow=0 by Proposition 1.1.2(5). Hence f ∗ is weight-exact (by the
same argument as above). Passing to the limit (using Remark 1.1.3(2)) we
prove assertion II3(ii). We also obtain that f ! is weight-exact (for a smooth
f) using assertion I and Proposition 1.1.2(8), i.e., we proved assertion II2.
Besides, the adjunctions yield (by Proposition 1.2.3(9)): f∗ is right weight-
exact, f! is left weight-exact; i.e., assertion II1 for f is ful�lled.

Now let f be projective. Then f!(DMc(X)wChow=0) ⊂ DMc(Y )wChow=0

(since f! ◦ g! = (f ◦ g)! for any g, and f! commutes with Tate twists). By
Proposition 1.2.3(10) we obtain that f! = f∗ is weight-exact. Hence if f is
a �nite universal homeomorphism, f ∗ is weight-exact also (since it is inverse
to f∗ by Proposition 1.1.2(12)). The same argument can be applied to the
functor f ! (see Remark 1.1.3(3)) and we obtain assertion II3(i). Next, using
the adjunctions and Proposition 1.2.3(9) again, we obtain that f ! is right
weight-exact and f ∗ is left weight-exact for an arbitrary projective f . So,
assertion II1 is ful�lled also in the case when f is projective.

Assertion II1 in the general case follows since any smoothly embeddable
morphism (by de�nition) is a composition of a closed (i.e., projective) im-
mersion with a smooth morphism.

III Since i∗ ∼= i! in this case, i∗ is weight-exact by assertion II1. j∗ is
weight-exact by assertion II2.

1. DMc(U) is the localization of DMc(X) by i∗(DMc(Z)) by Proposition
1.1.2(11). Hence Proposition 1.2.3(11) yields the result (see Remark 1.2.4).

2. Proposition 1.1.2(11) yields: wChow(X) is exactly the weight structure
obtained by 'gluing wChow(Z) with wChow(U)' via Proposition 1.2.3(13) (here
we use part 15 of loc. cit.). Hence loc. cit. yields the result (note that
j∗ = j!).
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IV The assertion can be easily proved by induction on the number of
strata using assertion III2.

V Let Sred be a regular scheme; denote by v the canonical immersion
Sred → S. Then v∗(QSred

) ∈ DMc(S)wChow=0 by the de�nition of wChow.
Now, v∗ is an equivalence of categories (by Proposition 1.1.2(12)) that sends
QS to QSred

(see part 7 of loc. cit.). Hence (applying the adjunction) we
obtain v∗(QSred

) ∼= QS. So, we proved assertion V2.
In order to verify assertion V1 we choose a strati�cation S = ∪Sα such

that all Sαl, red are regular. Since we have j∗l (QS) = QSl
∈ DMc(Sl)wChow≥0

(by assertion V2), assertion IV implies the result.

Remark 2.2.2. 1. Assertion III1 yields that any C ∈ Obj Chow(U) is a
retract of some C ′ coming from Chow(X). This fact can be easily deduced
from Hironaka's resolution of singularities (if we believe that the composition
of morphisms in Chow(−) could be described in terms of algebraic cycles;
cf. Remark 2.1.2(4)) in the case when X is a variety over a characteristic 0
�eld. Indeed, then any projective regular U -scheme YU possesses a projective
regular X-model Y (since one can resolve the singularities of any projective
model Y ′/X of YU by a morphism that is an isomorphism over U). The
author does not know any analogues of this argument in the case of a general
(reasonable) X (even with alterations instead of modi�cations, since it does
not seem to be known whether there exists an alteration of Y ′ that is étale
over U).

So, assertion III1 could be called (a certain) motivic resolution of singu-
larities (over a reasonable X). Certainly, applying the assertion repeatedly
one can easily extend it to the case when X \ U is not necessarily regular
(but U is open in X).

Alternatively, one can note here that for any C ∈ ObjChow(U) we have
j!(C) ∈ Cw≤0 and j∗(C) ∈ Cw≥0. Hence the natural morphism j!(C)→ j∗(C)
can be factored through CX = j∗(C)wChow≤0 ∈ ObjChow(X) (or through
j!(C)wChow≥0 ∈ ObjChow(X); see Proposition 1.2.3(2)), whereas C is a re-
tract of j∗(CX).

Actually, any object of Chow(U) comes from Chow(X) itself; see Theo-
rem 1.7 of [Wil12].

2. The following statement is a trivial consequence of part I of the The-
orem along with Proposition 1.1.2(8): if f : X → S is a smooth morphism,
then for any M ∈ ObjDMc(S), m ∈ Z we have: f ∗(M) ∈ DMc(X)wChow≥m
(resp. f ∗(M) ∈ DMc(X)wChow≤m) if and only if f !(M) ∈ DMc(X)wChow≥m
(resp. f !(M) ∈ DMc(X)wChow≤m).
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Now we prove that positivity and negativity of objects of DMc(S) (with
respect to wChow) can be 'checked at points'; this is a motivic analogue of
�5.1.8 of [BBD82].

Proposition 2.2.3. Let S denote the set of (Zariski) points of S; for a
K ∈ S we will denote the corresponding morphism K → S by jK.

Then M ∈ DMc(S)wChow≥0 (resp. M ∈ DMc(S)wChow≤0) if and only
if for any K ∈ S we have j!

K(M) ∈ DMc(K)wChow≥0 (resp. j∗K(M) ∈
DMc(K)wChow≤0); see Remark 1.1.3(2).

Proof. By Theorem 2.2.1(II1) ifM ∈ DMc(S)wChow≥0 (resp. M ∈ DMc(S)wChow≤0)
then for any immersion f : X → S we have f !(M) ∈ DMc(X)wChow≥0 (resp.
f ∗(M) ∈ DMc(X)wChow≤0). Passing to the limits with respect to immer-
sions corresponding to points of S (see Remark 1.1.3(2)) yields one of the
implications.

We prove the converse implication by noetherian induction. So, suppose
that our assumption is true for motives over any closed subscheme of S, and
that for some M ∈ ObjDMc(S) we have j!

K(M) ∈ DMc(K)wChow≥0 (resp.
j∗K(M) ∈ DMc(K)wChow≤0) for any K ∈ S.

We should prove that M ∈ DMc(S)wChow≥0 (resp. M ∈ DMc(S)wChow≤0).
By Proposition 1.2.3(3) it su�ces to verify: for any N ∈ DMc(S)wChow≤−1

(resp. for any N ∈ DMc(S)wChow≥1), and any h ∈ DMc(S)(N,M) (resp. any
h ∈ DMc(S)(M,N)) we have h = 0. We �x some N and h.

By the 'only if' part of our assertion (that we have already proved) we
have j∗K(N) ∈ DMc(K)wChow≤−1 (resp. j∗K(N) ∈ DMc(K)wChow≥1); hence
j∗K(h) = 0. By Proposition 1.1.2(14) we obtain that j∗(h) = 0 for some open
embedding j : U → S, where K is a generic point of U .

Now suppose that h 6= 0; let i : Z → S denote the closed embedding that
is complementary to j. Then Lemma 1.1.4(II) yields thatDMc(S)(i∗(N), i!(M)) 6=
{0} (resp. DMc(S)(i∗(M), i!(N)) 6= {0}). Yet i∗(N) ∈ DMc(Z)wChow≤−1

(resp. i!(N) ∈ DMc(Z)wChow≥1) by Theorem 2.2.1(II), whereas i!(M) ∈
DMc(Z)wChow≥0 (resp. i∗(M) ∈ DMc(Z)wChow≤0) by the inductive assump-
tion. The contradiction obtained proves our assertion.

Lastly we prove that 'weights are continuous'.

Lemma 2.2.4. Let K be a generic point of S; denote the morphism K → S
by jK.

Let M be an object of DMc(S), and suppose that j∗KM ∈ DMc(K)wChow≥0

(resp. j∗KM ∈ DMc(K)wChow≤0). Then there exists an open immersion
j : U → S, K ∈ U , such that j∗M ∈ DMc(U)wChow≥0 (resp. j∗M ∈
DMc(U)wChow≤0).
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Proof. First consider the case j∗K(M) ∈ DMc(K)wChow≥0. We consider a
weight decomposition of M [1]: B

g→ M [1]→A → B[1]. We obtain that
j∗K(g) = 0 (sinceDMc(K)wChow≤0 ⊥ j∗K(M)[1]); hence (by Proposition 1.1.2(14))
there exists an open immersion j : U → S (K ∈ U) such that j∗(g) = 0.
Hence j∗M [1] is a retract of j∗A. Since j∗A[−1] ∈ DMc(U)wChow≥0 (see
Theorem 2.2.1(II2)), and DMc(U)wChow≥0 is Karoubi-closed in DMc(U), we
obtain the result.

The second part of our statement (i.e., the one for the case j∗K(M) ∈
DMc(K)wChow≤0) can be easily veri�ed using the dual argument (see Propo-
sition 1.2.3(1)).

2.3 The 'gluing' construction of wChow over any (excel-
lent separated �nite-dimensional) S

In this subsection all schemes (including the base scheme S) will be excellent
separated �nite-dimensional; we do not assume them to be reasonable. Then
we can de�ne the Chow weight structure 'locally'. We explain how to do this
(using strati�cations and gluing of weight structures; we call this approach
to constructing wChow the 'gluing method').

First we describe certain candidates forDMc(S)wChow≥0 andDMc(S)wChow≤0

(partially they are motivated by Remark 2.1.2(2)); next we will prove that
they yield a weight structure for DMc(S) indeed.

For a scheme X we will denote by OP(X) (resp. ON (X)) the envelope
(see the Notation) of p∗(QP )(s)[i+ 2s](∼= p!(QP )(s)[i+ 2s]) in DMc(X); here
p : P → X runs through all morphisms to X that can be factored as g ◦ h,
where h : P → X ′ is a smooth projective morphism, X ′ is a regular scheme,
g : X ′ → X is a �nite universal homeomorphism, s ∈ Z, whereas i ≥ 0 (resp.
i ≤ 0). We denote OP(X) ∩ ON (X) by OZ(X).

Remark 2.3.1. 1. For a morphism f : Y → X we have (by Proposition
1.1.2(5)): f ∗p!(QP ) ∼= p′!f

′∗(QP ) = p′!(QPY
); if p is projective (as we de-

manded in the de�nition of (OP(−),ON (−))) then we can replace all −!

here with −∗. Now suppose that for X ′/X as above the reduced scheme Y ′red
associated to Y ′ = X ′Y is regular. Then f ∗p∗(QP )(s)[2s] ∈ OZ(Y ). Indeed,
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consider the diagram

PY,red
pr−−−→ PY

fP−−−→ P

yhY,red

yhY yh
Y ′red

y′r−−−→ Y ′
f ′−−−→ X ′

ygY yg
Y

f−−−→ X

(2)

where pr and y′r are the corresponding nil-immersions. We have f ∗p∗(QP )(s)[2s] ∼=
pY ∗QPY

(s)[2s] ∼= pY ∗pr∗QPY ′
red

(s)[2s] (see Remark 1.1.3(3)). We can trans-

form this further into (gY ◦ y′r)∗hY,red∗QPYred
(s)[2s] ∈ OZ(Y ).

Moreover, part 9 of Proposition 1.1.2 (that represents i!QB as a Tate
twist of QA for an immersion i : A→ B of connected regular schemes) easily
yields that f !p∗(QP )(s)[2s] ∈ OZ(Y ) if f induces an immersion Y ′red → X ′

of regular schemes. Indeed, we can assume that Y is connected; hence
Y ′red and PY,red are connected also. Denote the codimension of Y ′red in X ′

by c; then pr ◦ fP : PY,red → P is an immersion of regular schemes of
codimension c. Then (arguing as above) we obtain: f !p∗(QP )(s)[2s] ∼=
(gY ◦ y′r)∗hY,red∗(pr ◦ fP )!QP (s)[2s]. Using loc. cit., we transform this into
(gY ◦ y′r)∗hY,red∗QPYred

(s− c)[2s− 2c] ∈ OZ(Y ).
2. Any morphism p : X → S for a regular X can be factored through the

underlying reduced subscheme Sred of S. So, all our descriptions of wChow(S)
(including the ones given below) 'depend' only on Sred. This is (certainly)
coherent with the (weight-exact) isomorphism DMc(S) → DMc(Sred) given
by Proposition 1.1.2(12).

Besides, in all the statements of this section the reader may assume that
OP(X) = ON (X) = {0} unless Xred is regular.

3. Moreover, if X is generically of characteristic 0 then it su�ces for
our purposes to take X ′ = Xred. Indeed, in this case each �nite universal
homeomorphism with regular domain is generically of the form Xred → X;
so we can apply the argument used in the proof of Proposition 2.3.4(below)
for this alternative version of the de�nition of (OP(−),ON (−)) also. Hence
in the case when S is a reduced Q-scheme, one can assume that all the
morphisms p (that we use for the description of wChow(S) given below) are
smooth projective; this is also true if S is the spectrum of a subring of a
number �eld.
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For a strati�cation α : S = ∪Sαl we denote by OP(α) the class {M ∈
ObjDMc(S) : j!

l(M) ∈ OP(Sαl ), 1 ≤ l ≤ n}; ON (α) = {M ∈ ObjDMc(S) :
j∗l (M) ∈ ON (Sαl ), 1 ≤ l ≤ n}.

We de�ne: DMc(S)wChow≥0 = ∪αOP(α), DMc(S)wChow≤0 = ∪αON (α);
here α runs through all strati�cations of S.

Remark 2.3.2. 1. It seems that the unions in the de�nition of (DMc(S)wChow≥0, DMc(S)wChow≤0)
given above are not �ltering (if S is not a Spec Q-scheme). In particular,
we don't have OP(α) ⊂ OP(α′) (and ON (α) ⊂ ON (α′)) for a general
subdivision α′ of a strati�cation α. In order to overcome this di�culty we
prove a certain weaker statement instead (see Lemma 2.3.3(3)); it is su�-
cient for our purposes. In the proof of this result we also treat the question
when an element of OP(α) (or of ON (α)) belongs to OP(α′) (or to ON (α′),
respectively), where α′ is a subdivision of α.

2. Though we de�ne (DMc(S)wChow≥0, DMc(S)wChow≤0) in terms ofOP(α)
and ON (α), there seems to be no way to express our OP(α) and ON (α) in
terms of wChow. So, we only use OP(−) and ON (−) as technical notions in
the de�nition of wChow; we could have chosen certain alternative versions of
the former (see Remark 2.3.7(1) below). Taking all of this into account, the
reader should not be scared of 'bad' properties of OP(α) and ON (α).

Lemma 2.3.3. 1. Let δ be a strati�cation of S; we denote the corresponding
immersions Sδl → S by jl. Let M be an object of DMc(S).

Suppose that j!
l(M) ∈ DMc(S

δ
l )wChow≥0 (resp. j∗l (M) ∈ DMc(S

δ
l )wChow≤0)

for all l.
Then M ∈ DMc(S)wChow≥0 (resp. M ∈ DMc(S)wChow≤0).
2. j∗(DMc(V )wChow≥0) ⊂ DMc(S)wChow≥0 and j!(DMc(V )wChow≤0) ⊂

DMc(S)wChow≤0 for any immersion j : V → S.
3. For anyM ∈ DMc(S)wChow≤0 and N ∈ DMc(S)wChow≥1(= DMc(S)wChow≥0[1])

there exists a strati�cation α of S such that M ∈ ON (α), N ∈ OP(α)[1].

Proof. 1. We use induction on the number of strata in δ. The 2-functoriality
of motivic upper image functors yields: it su�ces to prove the statement for
δ consisting of two strata.

So, let S = U ∪Z, Z and U are disjoint, U 6= {0} is open in S; we denote
the immersions U → S and Z → S by j and i, respectively.

By the assumptions on M , there exist strati�cations β of Z and γ of U
such that i!(M) ∈ OP(β) and j!(M) ∈ OP(γ) (resp. i∗(M) ∈ ON (β) and
j∗(M) ∈ ON (γ)).

We 'unify' β with γ and denote the strati�cation of S obtained by α (for
#γ = Γ we put Sαl = Uγ

l if 1 ≤ l ≤ Γ and Sαl = βγl−Γ if l > Γ; note that
we really obtain a strati�cation in our weak sense of this notion this way;

26



see the Notation). Then the 2-functoriality of −! (resp. of −∗) yields that
M ∈ OP(α) (resp. M ∈ ON (α)).

2. We choose a strati�cation δ containing V (as one of the strata). So
we assume that V = Sδv for some index v. Then it can be easily seen that
j!
ljv∗ = 0 = j∗l jv! for any l 6= v and j!

vjv∗
∼= 1DM(V )

∼= j∗vjv! (see Proposition
1.1.2(10)). Hence the result follows from assertion 1.

3. By Remark 2.3.1(1) it su�ces to verify: if β, γ are strati�cations of S,
and Sil → Sβl , S

′
il → Sγl are (�nite) sets of �nite universal homomorphisms,

then there exists a common subdivision α of β, γ such that all the (reduced)
schemes (Sil ×S Sαm)red, (S

′
il ×S Sαm)red are regular. To this end it obviously

su�ces to prove: if f : Z → S is an immersion, gi : Ti → Z are some �nite
universal homeomorphisms, then there exists a strati�cation δ of Z such that
the schemes Til = (Ti ×Z Zδ

l )red are regular for all i and l.
We prove the latter statement by easy Noetherian induction. Suppose

that it is ful�lled for any proper closed subscheme Z ′ of Z. Since all (Ti)red
are generically regular, we can choose a (su�ciently small) open non-empty
subscheme Z1 of Z such that all of (Ti ×Z Z1)red are regular.

Next, apply the inductive assumption to the scheme Z ′ = Z \Z1 and the
morphisms g′i = gi×Z Z ′; we choose some strati�cation α′ of Z ′ such that all
T ′il = (Ti ×Z Z ′α

′

l )red are regular. Then it remains to 'unify' Z1 with α′, i.e.,
we consider the following strati�cation α: Zα

1 = Z1, and Zα
l = Z ′α

′

l−1 for all
l > 1.

Proposition 2.3.4. I1. The couple (DMc(S)wChow≥0, DMc(S)wChow≤0) yields
a bounded weight structure wChow for DMc(S).

2. DMc(S)wChow≥0 (resp. DMc(S)wChow≤0) is the envelope of p∗(QP )(s)[2s+
i] (resp. of p!(QP )(s)[2s − i]) for s ∈ Z, i ≥ 0, and p : P → S being the
composition of a smooth projective morphism with a �nite universal homeo-
morphism whose base is regular and with an immersion.

II w(S) can be extended to a weight structure wbigChow for the whole DM(S).

Proof. I We prove the statement by Noetherian induction. So, we suppose
that assertions I1 and I2 are ful�lled for all proper closed subschemes of S.
We prove them for S.

We denote the envelopes mentioned in assertion I2 by (DMc(S)wChow
′≥0, DMc(S)wChow

′≤0).
We should prove that wChow and wChow

′ yield coinciding weight structures
for DMc(S).

Obviously,DMc(S)wChow≤0, DMc(S)wChow≥0,DMc(S)wChow
′≤0, andDMc(S)wChow

′≥0

are Karoubi-closed in DMc(S), and are semi-invariant with respect to trans-
lations (in the appropriate sense).

27



Now, Lemma 2.3.3(2) yields that DMc(S)wChow
′≤0 ⊂ DMc(S)wChow≤0 and

DMc(S)wChow
′≥0 ⊂ DMc(S)wChow≥0. Hence in order to verify that wChow and

wChow
′ are weight structures indeed, it su�ces to verify:

(i) the orthogonality axiom for wChow
(ii) any M ∈ ObjDMc(S) possesses a weight decomposition with respect

to wChow ′.
Hence these statements along with the boundedness of wChow imply as-

sertion I1. Besides, Proposition 1.2.3(4) yields that these two statements
imply assertion I2 also, whereas in order to prove I1 it su�ces to verify the
boundedness of wChow ′ (instead of that of wChow).

Now we verify (i). For some �xedM ∈ DMc(S)wChow≤0 andN ∈ DMc(S)wChow≥1

we check thatM ⊥ N . By Lemma 2.3.3(3), we can assume thatM ∈ ON (α),
N ∈ OP(α)[1] for some strati�cation α of S. Hence it su�ces to prove that
ON (α) ⊥ OP(α)[1] for any α. The latter statement is an easy consequence
of Lemma 1.1.4 (parts I1 and II).

Now we verify (ii) along with the boundedness of wChow ′. We choose
some generic point K of S, denote by Kp its perfect closure, and by jKp :
Kp → S the corresponding morphism. We �x some M . Since Kp is a rea-
sonable scheme, we have j∗Kp(M) ∈ 〈Chow(Kp)〉 (see Proposition 1.1.2(13)).
Moreover, since Kp is perfect, there exist some smooth projective varieties
Pi/K

p, 1 ≤ i ≤ n, (we denote the corresponding morphisms Pi → Kp by pi)
and some s ∈ Z such that j∗Kp(M) belongs to the triangulated subcategory of
DMc(K

p) generated by {pi∗(QPi
)(s)[2s]}. Now we choose some �nite univer-

sal homeomorphismK ′ → K (i.e., a morphism of spectra of �elds correspond-
ing to a �nite purely inseparable extension) such that Pi are de�ned (and are
smooth projective) over K ′. By Proposition 1.1.2(14,12), for the correspond-
ing morphisms jK′ : K ′ → S, p′i : PK′,i → K ′ we have: j∗K′(M) belongs to
the triangulated subcategory of DMc(K

′) generated by {p′i∗(QPK′,i
)(s)[2s]}.

Applying Zariski's main theorem in the form of Grothendieck, we can choose
a �nite universal homeomorphism g from a regular scheme U ′ whose generic
�bre is K ′ to an open U ⊂ S (j : U → S will denote the corresponding
immersion) and smooth projective hi : PU ′,i → U ′ such that the �bres of
PU ′,i over K ′ are isomorphic to PK′,i. Moreover, by Proposition 1.1.2(14) we
can also assume that (j ◦ g)∗(M) belongs to the triangulated subcategory
of DMc(U

′) generated by {hi∗(QPU′,i
)(s)[2s]}. Then Remark 1.1.3(3) yields

that j∗(M) belongs to the triangulated subcategory D of DMc(U) generated
by {(g ◦ hi)∗(QPU′,i

)(s)[2s]}.
Since idU yields a strati�cation of U , the set {(g ◦ hi)∗(QPU′,i

)(s)[2s]}
is negative in DMc(U) (since ON (α) ⊥ OP(α)[1] for any α, as we have
just proved). Therefore (by Proposition 1.2.3(6�7)) there exists a weight
structure d for D such that Dd≥0 (resp. Dd≤0) is the envelope of ∪n≥0{(g ◦
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hi)∗(QPU′,i
)(s)[2s+ n]} (resp. of ∪n≥0{(g ◦ hi)∗(QPU′,i

)(s)[2s− n]}). We also
obtain that Dd≥0 ⊂ DMc(U)wChow

′≥0 and Dd≤0 ⊂ DMc(U)wChow
′≤0.

We denote S\U by Z (Z could be empty); i : Z → S is the corresponding
closed immersion. By the inductive assumption, wChow and wChow

′ yield
coinciding bounded weight structures for DMc(Z).

We have the gluing datum DMc(Z)
i∗→ DMc(S)

j∗→ DMc(U). We can
'restrict it' to a gluing datum

DMc(Z)
i∗→ j∗−1(D)

j∗0→ D

(see Proposition 1.2.3(13)), whereas M ∈ Obj(j∗−1(D)); here j∗0 is the corre-
sponding restriction of j∗. Hence by loc. cit. there exists a weight structure
w′ for j∗−1(D) such that i∗ and j∗0 are weight-exact (with respect to the
weight structures mentioned). Hence there exists a weight decomposition
B → M → A of M with respect to w′. Besides, there exist m,n ∈ Z
such that j∗0(M) ∈ DMc(U)wChow

′≥m, j∗0(M) ∈ DMc(U)wChow
′≤n, i!(M) ∈

DMc(Z)wChow
′≥m, and i∗(M) ∈ DMc(Z)wChow

′≤n. Hence A[−1],M [−m] ∈
DMc(S)wChow

′≥0; B,M [−n] ∈ DMc(S)wChow
′≤0; here we apply Proposition

1.2.3(14). So, we veri�ed (ii) and the boundedness of wChow ′. As was shown
above, this �nishes the proof of assertion I.

II: immediate from assertion I1; cf. the proof of Theorem 2.1.1.

Proposition 2.3.5. For the version of wChow constructed in this subsection,
the analogues of all parts of Theorem 2.2.1, as well as of Proposition 2.2.3
and Lemma 2.2.4 are ful�lled.

Proof. The proof of Theorem 2.2.1(I) carries over to our situation without
changes. The same is true for parts II1�II2 of loc. cit. for the case of a
smooth f . Lemma 2.3.3(2) yields assertion II1 of Theorem 2.2.1 for the case
when f is an immersion. The general case of loc. cit. follows from these two
immediately.

The (analogues of) the remaining parts of the Theorem follow from (the
analogue of) part II via the same arguments as in �2.2.

Corollary 2.3.6. 1. We have Chow(S) ⊂ HwChow(S) (see the de�nition of
Chow(S) in �2.1).

2. For a reasonable S the 'alternative' version of wChow (constructed
above) coincides with the version given by Theorem 2.1.1(I).
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Proof. 1. It su�ces to verify that p∗(QP ) ∈ HwChow(S) for any regular P
and a projective morphism p : P → S. By the previous proposition, we
obtain QP ∈ DMc(P )wChow=0; since p!

∼= p∗, we obtain the result.
2. Indeed, denote the 'old' version of wChow by v, and the 'alternative'

one by w. The previous assertion along with Proposition 1.2.3(10) yields
that 1DMc(S) is weight-exact with respect to v and w. Hence part (4) of loc.
cit. yields the result.

Remark 2.3.7. 1. Proposition 2.3.4 also easily yields that we could have
considered larger OZ(X) (see the beginning of the subsection): one can take
OZ(X) = Chow(X).

2. Thus the results of this subsection (in particular) yield a collection of
new descriptions of wChow(S) for the case of a reasonable S (cf. also Remark
2.3.1(3)).

3. In the �rst draft of this paper (only) the gluing method of construct-
ing wChow was used (this approach was �rst proposed in Remark 8.2.4(3)
of [Bon10a], that was in its turn inspired by [BBD82]). Next the author
proved part 1 of the Corollary. Then (in order to deduce our main results) it
remained to note that Chow(S) generates DMc(S). Luckily, it was easy to
prove the negativity of Chow(S) (without relying on the gluing construction
of wChow; see Lemma 1.1.4(I1)); so the proof was simpli�ed (for a reasonable
S; note still that the scheme of the proof of loc. cit. is similar to the chain of
arguments that yields the �rst part of the Corollary). Yet (as we have noted
just above) even for a reasonable S the gluing method gives us some 'new'
descriptions of wChow. The main disadvantage of the gluing method is that it
does not yield an explicit description of the wholeDMc(S)wChow=0 (though we
can describe it as the intersection of DMc(S)wChow≤0 with DMc(S)wChow≥0).

4. Let K be a generic point of S, jK : K → S is the corresponding mor-
phism; assume that forM ∈ ObjDMc(S) we have j∗K(M) ∈ DMc(K)wChow=0.
By Theorem 2.2.1(II3(i)), for any �nite universal homeomorphism K ′ → K,
jK′ : K ′ → S being the corresponding composition, we also have j∗K′(M) ∈
DMc(K

′)wChow=0. Hence an argument similar to that used in the proof of
Proposition 2.3.4 easily yields: there exists an open immersion j : U → S,
K ∈ U , such that j∗(M) is a retract of (g ◦ h)∗QP (s)[2s], where h : P → U ′

is a smooth projective morphism, U ′ is a regular scheme, g : U ′ → U is a
�nite universal homeomorphism, s ∈ Z.

5. In [Bon11] the author reduces the conjecture on the existence of the
motivic t-structure for DMc(S) to the case when S is a universal domain.
To this end certain gluing arguments are very useful.

6. Possibly one can use the methods of [Heb11] in order to extend the
weight-exactness results for the motivic image functors given by Proposition
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2.3.4 to not necessarily smoothly embeddable morphisms.
7. Motives with Z-coe�cients are more 'mysterious' than those with

Q-ones; yet the author constructed a certain version of the Chow weight
structure for them in [Bon13].

3 Applications to (co)homology of motives and

other matters

In �3.1 we study weight complexes for S-motives (and their compatibility
with weight-exact motivic image functors).

In �3.2 we prove that K0(DMc(S)) ∼= K0(Chow(S)) (following [Bon10a]),
and de�ne a certain 'motivic Euler characteristic' for (separated �nite type)
S-schemes.

In �3.3 we consider Chow-weight spectral sequences and �ltrations for
(co)homology of S-motives (following �2.4 of [Bon10a]). We observe that
Chow-weight �ltrations yield Beilinson's 'integral part' of motivic cohomol-
ogy (see �2.4.2 of [Bei85] and [Sch00]).

In �3.4 we verify that Chow-weight spectral sequences yield the existence
of weight �ltrations for the 'perverse étale homology' of motives over �nite
type Q-schemes (this is not at all automatic for mixed perverse sheaves in
characteristic 0).

In �3.5 we introduce the notion of relative weight structure. The axiomat-
ics of those was chosen to be an abstract analogue of Proposition 5.1.15 of
[BBD82]. Several properties of relative weight structures are parallel to those
for 'ordinary' weight structures.

In �3.6 we study the case when S = X0 is a variety over a �nite �eld. In
this case the category Db

m(X0,Ql) of mixed complexes of sheaves possesses
a relative weight structure whose heart is the class of pure complexes of
sheaves. Since the étale realization of motives preserves weights, we obtain
that (Chow)-weight �ltrations for some cohomology theories can be described
in terms of the category Db

m(X0,Ql).
In this section we will always assume that our base schemes are reason-

able. Yet we also could have used the 'gluing' version of wChow (and consider
any �nite-dimensional noetherian S; the main di�erence is that we would
have to put HwChow instead of Chow(−) everywhere).

3.1 The weight complex functor for DMc(S)

We prove that the weight complex functor (whose '�rst ancestor' was de�ned
by Gillet and Soulé) can be de�ned for DMc(S).
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Proposition 3.1.1. 1. The embedding Chow(S) → Kb(Chow(S)) factors
through a certain exact conservative weight complex functor tS : DMc(S)→
Kb(Chow(S)).

2. For M ∈ ObjDMc(S), i, j ∈ Z, we have M ∈ DMc(S)[i,j] (see De�ni-
tion 1.2.1(IV)) if and only if t(M) ∈ K(Chow(S))[i,j] (see Remark 1.2.2).

3. For schemes X, Y let F : DMc(X) → DMc(Y ) be a weight-exact
functor of triangulated categories (with respect to the Chow weight structures
for these categories; so F could be equal to i! for a �nite type projective
morphism i : X → Y , or to j∗ for a �nite type smooth morphism j : Y → X)
that possesses a di�erential graded enhancement. Denote by FKb(Chow) the
corresponding functor Kb(Chow(X)) → Kb(Chow(Y )). Then there exists a
choice of tX and tY that makes the diagram

DMc(X)
F−−−→ DMc(Y )ytX ytY

Kb(Chow(X))
F
Kb(Chow)−−−−−−→ Kb(Chow(Y ))

commutative up to an isomorphism of functors.

Proof. 1. By Proposition 5.3.3 of [Bon10a], this follows from the existence
of a bounded Chow weight structure for DMc(S) along with the fact that it
admits a di�erential graded enhancement (see De�nition 6.1.2 of ibid.; note
also that an alternative 'f-category' version of the weight complex functor
was constructed by Beilinson and Schnürer; see �7 of [Sch11]). The latter
property of DM(S) can be easily veri�ed since it can be described in terms
of the derived category of qfh-sheaves over S; see Theorem 16.1.2 of [CiD09]
(and also cf. �6.1 of [BeV08]).

2. Immediate from Theorem 3.3.1(IV) of [Bon10a].
3. We use the notation and de�nitions of �2 of [Bon09a] (that originate

mostly from [BoK90]).
Since DMc(X) = 〈Chow(S)〉, we can assume that DMc(X) = Tr+(CX),

where CX is a negative triangulated category such that H(CX) = Chow(X)
(see Remark 2.7.4(2) of ibid.). Replacing DMc(Y ) by an equivalent cat-
egory, we may also assume (similarly) that DMc(Y ) = Tr+(CY ), where
CY is a negative triangulated category such that H(CY ) = Chow(Y ), and
F = Pre-Tr(F ′) for some di�erential graded functor CX → CY . Arguing
as in �6.1 of ibid, we obtain that it su�ces to apply Tr+ to the following
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diagram:

CX
F ′−−−→ CYy y

H(CX)
H(F ′)−−−→ H(CY )

Remark 3.1.2. 1. The '�rst ancestor' of our weight complex functor was
de�ned by Gillet and Soulé in [GiS96]. Weight complex for a general trian-
gulated category C endowed with a weight structure was de�ned in [Bon10a].
Even in the case when C does not admit a di�erential graded enhancement,
one can still de�ne a certain 'weak' version of the weight complex; see �3 of
ibid. (and this version does not depend on any choices). It follows that for
M ∈ ObjDMc(S) the isomorphism class of tS(M) (in Kb(Chow(S))) does
not depend on any choices (see ibid.).

2. In [GiS09] a functor h from the category of Deligne-Mumford stacks
over S (with morphisms being proper morphisms over S) to the category
of complexes over a certain category of K0-motives was constructed; Gillet
and Soulé considered base schemes satisfying rather restrictive conditions
(mostly, of dimension ≤ 1). We conjecture: for a �nite type morphism
p : X → S there is a functorial isomorphism h(X) → t(Mc(X)), where
Mc(X) = p∗p

!(QS). For S being the spectrum of a characteristic 0 �eld this
was (essentially) proved in �6.6 of [Bon09a]. Note here: though the category
of K0-motives is somewhat 'larger' than Chow(S), it very probably su�ces
to consider its 'Chow' part (this would be the category Chow(S) considered
in [CoH00]).

Note that our de�nition of a weight complex (forMc(X)) gives it much
more functoriality in X than it was established [GiS09]; we also study its
functoriality with respect to S, and relate it with (co)homology (below).

Besides, we can restrict our de�nition of weight complexes to (motives
with compact support of) quotient stacks (cf. De�nition 1.2 of [GiS09]).
For a �nite G, #G = n, acting on a �nite type scheme X/S one can take
Mc(X/G) = aG∗Mc(X) ∈ ObjDMc(S). Here aG is the idempotent mor-

phism (correspondence)
∑

g∈G g

n
: X → X. Certainly, for G = {e} we will

have tS(Mc(X/G)) = tS(Mc(X)).
3. Theorem 2.1.1 along with the results of [Bon10a] also imply: tS can be

extended to an exact functor DM(S) → K(BChow(S)), where BChow(S)
is the big hull of Chow(S) (see De�nition 1.2.1(IX)).

4. One can also de�ne exact (and conservative) higher truncation func-
tors tS,N from DMc(S) to certain triangulated DMc(S)N for all N ≥ 0; cf.
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�6.1 of [Bon09a]. Here tS,0 = tS; DMc(S)N is constructed using di�eren-
tial graded methods that enable 'killing all morphisms' from DMc(S)wChow=0

to DMc(S)wChow=i for i < −N and preserving such morphisms for i ≥ −N .
tS,N ′ factors through tS,N for any N ′ > N , and the 2-limit of DMc(S)N equals
DMc(S). tS,N would also satisfy the analogue of Theorem 6.2.1 of ibid. Yet
it seems that tS = tS,0 is the most interesting of these truncation functors.

3.2 K0(DMc(S)) and a motivic Euler characteristic

Now we calculate K0(DMc(S)) and study a certain Euler characteristic for
(�nite type separated) S-schemes.

Proposition 3.2.1. 1. We de�ne K0(Chow(S)) as the Abelian group whose
generators are [M ],M ∈ ObjChow(S), and the relations are [B] = [A]+[C] if
A,B,C ∈ ObjChow(S) and B ∼= A

⊕
C. For K0(DMc(S)) we take similar

generators and set [B] = [A] + [C] if A→ B → C → A[1] is a distinguished
triangle.

Then the embedding Chow(S)→ DMc(S) yields an isomorphismK0(Chow(S)) ∼=
K0(DMc(S)).

2. For the correspondence χ : X 7→ [p∗p
!(QS)] (here p : X → S is a �nite

type separated morphism) from the class of �nite type separated S-schemes
to K0(DMc(S)) ∼= K0(Chow(S)) we have: χ(X \ Z) = χ(X)− χ(Z) if Z is
a closed subscheme of X.

Proof. 1. Immediate from (part I of) Theorem 2.1.1 and Proposition 5.3.3(3)
of [Bon10a].

2. Denote the immersion Z → X by i, and the complementary immer-
sion by j. By Proposition 1.1.2(10) for any M ∈ ObjDMc(X) we have
a distinguished triangle i∗i!(M) → M → j∗j

!(M) (note that i! ∼= i∗ and
j! = j∗). Now for M = p!(QS) this triangle specializes to the triangle
i∗(p◦ i)!(QS)→ p!(QS)→ j∗(p◦ j)!(QS). It remains to apply [p∗(−)] and the
de�nition of K0(DMc(S)) to obtain the result.

Remark 3.2.2. 1. Assertion 2 is a vast extension of Corollary 5.13 of [GiS09].
It allows us to de�ne certain motivic Euler characteristics for (�nite type
separated) S-schemes.

2. We hope that our results would be useful for the theory of motivic
integration.

Note in particular: we obtain that any (not necessarily weight-exact!)
motivic image functor DMc(X)→ DMc(Y ) induces a group homomorphism
K0(Chow(X))→ K0(Chow(Y )).
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Besides, in contrast to the 'classical' case (when S is the spectrum of
a �eld) there does not seem to exist a 'reasonable' (tensor) product for
Chow(S). Yet DMc(S) is a tensor triangulated category; hence one can
use assertion 1 in order to de�ne a ring structure on K0(Chow(S)).

3.3 Chow-weight spectral sequences and �ltrations

Now we discuss (Chow)-weight spectral sequences and �ltrations for homol-
ogy and cohomology of motives. We note that any weight structure yields
certain weight spectral sequences for any (co)homology theory; the main
distinction of the result below from the general case (i.e., from Theorems
2.3.2 and 2.4.2 of ibid.) is that T (H,M) always converges (since wChow is
bounded). Since below we will be mostly interested in weight �ltrations for
cohomological functors, we will de�ne them in this situation only; certainly,
dualization is absolutely no problem (cf. �2.1 of ibid.)

Proposition 3.3.1. Let A be an abelian category.
I Let H : DMc(S) → A be a homological functor; for any r ∈ Z denote

H ◦ [r] by Hr.
For an M ∈ ObjDMc(S) we denote by (M i) the terms of t(M) (so M i ∈

ObjChow(S); here we can take any possible choice of t(M)).
Then the following statements are valid.
1. There exists a (Chow-weight) spectral sequence T = T (H,M) with

Epq
1 = Hq(M

p) =⇒ Hp+q(M); the di�erentials for E1T (H,M) come from
t(M).

2. T (H,M) is DMc(S)-functorial in M (and does not depend on any
choices) starting from E2.

II1. Let H : DMc(S) → A be any contravariant functor. Then for any
m ∈ Z the object (WmH)(M) = Im(H(wChow≥mM) → H(M)) does not
depend on the choice of wChow≥mM ; it is functorial in M .

We call the �ltration of H(M) by (WmH)(M) its Chow-weight �ltration.
2. Let H be a cohomological functor. For any r ∈ Z denote H ◦ [−r] by

Hr.
Then the natural dualization of assertion I is valid. For anyM ∈ ObjDMc(S)

we have a spectral sequence with Epq
1 = Hq(M−p); it converges to Hp+q(M).

Moreover, the step of �ltration given by (El,m−l
∞ : l ≥ k) on Hm(X) equals

(W kHm)(M) (for any k,m ∈ Z). T is functorial in H and M starting from
E2.

Proof. I Immediate from Theorem 2.3.2 of ibid.
II1. This is Proposition 2.1.2(2) of ibid.
2. Immediate from Theorem 2.4.2 of ibid.
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Remark 3.3.2. 1. We obtain certain Chow-weight spectral sequences and
�ltrations for any (co)homology of motives. In particular, we have them
for (rational) étale and motivic (co)homology of motives. For the latter
theory, we obtain certain results that cannot be proved using 'classical' (i.e.,
Deligne's) methods, since the latter heavily rely on the degeneration of (an
analogue of) T at E2. We will conclude this subsection by studying an
example of this sort; we obtain a result that (most probably) could not be
guessed using the 'mixed motivic intuition'.

2. T (H,M) can be naturally described in terms of the virtual t-truncations
of H (starting from E2); see �2.5 of [Bon10a] and �A.3 below.

3. We obtain that any (co)homology of any M ∈ ObjDMc(S) possesses
a �ltration by subfactors of (co)homology of regular projective S-schemes.

4. Actually, (WmH)(M) = Im(H(wChow≥mM) → H(M)) does not de-
pend on the choice of wChow≥mM and is functorial inM for any contravariant
H : DMc(S)→ A; see Proposition 2.1.2(2) of [Bon10a].

The functoriality of Chow-weight �ltrations has quite interesting conse-
quences.

Proposition 3.3.3. Suppose that a scheme X is reasonable; adopt the nota-
tion of Proposition 1.1.2(10). Let H : DMc(X)→ A be a contravariant func-
tor. Then for all N ∈ DMc(U)wChow≤0 consider G(N) = (W 0H)(j!(N)) ⊂
H(j!(N)).

I The following statements are ful�lled.
1. G(N) is DMc(U)-functorial in N .
2. (For any N ∈ DMc(U)wChow≤0) G(N) is a quotient of H(M) for some

M ∈ DMc(X)wChow=0.
II Let now N = j∗(M)(= j!(M)) for M ∈ DMc(X)wChow=0. Then the

following statements are ful�lled.
1. G(N) = ImH(M) → H(j!j

!(M)) (here we apply H to the morphism
j!j

!(M)→M coming from the adjunction j! : DMc(U) � DMc(X) : j!).
2. Let H = DMc(X)(−,QX(q)[p]) for some q, p ∈ Z, and M = f∗(QR)

for a projective f : R→ X, R is regular. Then G(N) ∼= Im(Grpγ(K2q−p(R)⊗
Q)→ Grpγ(K2q−p(RU)⊗Q)).

Proof. I. Assertion 1 is an immediate consequence of Remark 3.3.2(4). Next
(by Theorem 2.2.1(II1))N ∈ DMc(U)wChow≤0 implies j!(N) ∈ DMc(X)wChow≤0.
Hence w≥0j!(N) ∈ DMc(X)wChow=0 (see Proposition 1.2.3(2)). This yields
assertion 2.

II We have i∗i∗(M) ∈ DMc(X)wChow≤0. Hence the distinguished triangle

i∗i
∗(M)→ j!(N)[1](= j!j

!(M)[1])→M [1]

36



(given by Proposition 1.1.2(10)) yields a weight decomposition of j!(N)[1].
This yields assertion II1.

Now, Proposition 1.1.2(15) (see also Corollary 14.2.14 of [CiD09]) yields
DMc(X)(f∗(QR),QX(q)[p]) ∼= Grpγ(K2q−p(R) ⊗ Q). Besides, the adjunction
j! : DMc(U) � DMc(X) : j! yields that

DMc(X)(j!j
!(M),QX(q)[p]) ∼= DMc(U)(j!(M), j!(QX)(q)[p]) ∼= DMc(U)(fU∗(QRU

),QU(q)[p]) ∼= Grpγ(K2q−p(RU)⊗Q).

It remains to compare the rows of the diagram

H(M) −−−→ H(j!j
!(M))y y

Grpγ(K2q−p(R)⊗Q) −−−→ Grpγ(K2q−p(RU)⊗Q)

The results of [CiD09] (we need the naturality of the isomorphism given
by Corollary 14.2.14 of ibid. and also of Proposition 1.1.2(5)) yield that this
diagram can be made commutative by (possibly) modifying the left column
by an isomorphism; this �nishes the proof of assertion II2.

Remark 3.3.4. 1. Thus one may say that (W 0H)(j!(N)) yields the 'integral
part' of H(j!(N)): we obtain the subobject of H∗(j!(N)) that 'comes from
a nice X-model' of N if the latter exists, and a factor of H(M) for some
M ∈ DMc(X)wChow=0 in general; cf. [Bei85], [Sch00], and [Sch12]. Note here
that one can also consider N ∈ Chow(K) for K being a generic point of X,
since any such N can be lifted to a Chow motif over some U (K ∈ U , U is
open in X), by Theorem 2.2.1(III1) combined with Proposition 1.1.2(14); cf.
also Remark 1.11 of [Wil12].

Note that this construction enjoys 'the usual' Chow(K)-functoriality; this
is an easy consequence of Proposition 1.1.2(14) and Remark 2.1.2(1).

2. Hence we proved an alternative to Theorem 1.1.6 of [Sch00]. In more
detail: in the setting of our assertion II2 we can take X being the spectrum
of a Dedekind domain, and U 'approximating' the spectrum K of its fraction
�eld; then the (corresponding) restriction of H(j!(N)) to Chow motives over
K satis�es the conditions of loc. cit. Hence in this partial case our version
of the 'integral part' of motivic cohomology coincides with the Scholl's one.

An alternative 'mixed motivic' approach to the construction of this inte-
gral part is given by Corollary 1.10 of [Wil12]. It is equivalent to our one for
H being the motivic cohomology (as in assertion II2); yet the author does
not know how to extend loc. cit. to the case of a general H.
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3. Our description of the 'integral part' of cohomology is very short and
does not rely on any conjectures (in contrast to the description given in
[Sch12]).

4. It could also be interesting to consider W lH∗(j!(N)) for l < 0.

3.4 Application to mixed sheaves: the 'characteristic 0'
case

Suppose that S ′ is a �nite type Spec Z-scheme. Denote by Het
Ql

the étale
realization functor DMc(S

′) → DbShet(S ′,Ql), where DbShet(S ′,Ql) is the
Ekedahl's derived category of Ql-constructible sheaves (cf. �1 of [Hub97]); it
could be called étale homology (so, it is covariant). We will assume below
that Het

Ql
converts the motivic image functors into the corresponding functors

for DbShet(−,Ql)(−) (it seems that the existence of such a realization is not
fully established in the existing literature; yet a forthcoming paper of Cisinski
and Deglise should close this gap).

Now, let S be a �nite type (separated) Q-scheme. Presenting it as
a projective limit of certain S ′i that are �at of �nite type over an open
subscheme of Spec Z[1

l
], and using coherent functoriality of motives and

étale sheaves, one can construct an exact (covariant) realization functor
H : DMc(S)→ DSH(S), where the latter is the category of mixed complexes
of Ql-étale sheaves as considered in [Hub97] (i.e., it is the inductive limit of
derived categories of complexes sheaves that are constructible and mixed with
respect to 'horizontal' strati�cations of 'models' of S). Indeed, the arguments
of ibid. can be applied here without any problem. The key observation here
is that QS is mixed (as an object of lim−→DbShet(S ′i,Ql) ⊃ DSH(S)), whereas
(the étale sheaf) image functors preserve mixedness.

The functoriality properties of H also yields that it sends Chow mo-
tives over S to pure complexes of sheaves (of weight 0; see De�nition 3.3
of [Hub97]). Indeed, it su�ces to note that H sends QX for a regular X
to an object of DSH(X) of weight 0, whereas f! = f∗ for a projective f
preserves weights of sheaves (see the Remark succeeding De�nition 3.3 of
[Hub97]). We easily obtain the following statement.

Proposition 3.4.1. Take Hper being the perverse étale homology theory,
i.e., Hper

i (M) (for any M ∈ ObjDMc(S), i ∈ Z) is the i-th homology of
H(M) with respect to the perverse t-structure of DSH (see Proposition 3.2
of [Hub97]). Then Hper

i (M) have weight �ltrations (de�ned using De�nition
3.7 of loc. cit., for all i ∈ Z), i.e., it has a increasing �ltration whose j-th
factor is of weight j.
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Proof. The existence (and convergence) of the corresponding Chow-weight
spectral sequence T = T (Hper,M) (see Proposition 3.3.1)(I1), or Theorem
2.3.2 of [Bon10a]) yields that Hper

i (M) possesses a (Chow-weight) �ltration
whose r-th factor (for any r ∈ Z) is a subquotient of Hper

i+r(M
−r). Now,

Hper
i+r(M

−r) is of weight i + r (since this is true for M−r[r + i]; cf. Theorem
5.4.1 of [BBD82]). By Proposition 3.4 of ibid. we obtain that the same is true
for any its subquotient. Shifting the indexing of the Chow-weight �ltration,
we obtain a �ltration of Hper

i (M) with the properties required.

Remark 3.4.2. Note that the existence of weight �ltrations for mixed perverse
sheaves is not at all automatic (in this setting); see the Warning preceding
Proposition 3.4 of loc. cit.

3.5 Relative weight structures

In order to de�ne weights for mixed complexes of sheaves (over a �nite �eld),
we have to generalize the de�nition of a weight structure.

De�nition 3.5.1. I Let F : C → D be an exact functor (of triangulated
categories).

A pair of extension-stable Karoubi-closed subclasses Cw≤0, Cw≥0 ⊂ ObjC
for a triangulated category C will be said to de�ne a relative weight structure
w for C with respect to F (or just an F -weight structure) if they satisfy the
following conditions.

(i) 'Semi-invariance' with respect to translations.
Cw≤0 ⊂ Cw≤0[1], Cw≥0[1] ⊂ Cw≥0.
(ii) Weak orthogonality.
Cw≤0 ⊥ Cw≥0[2].
(iii) F -orthogonality.
F kills all morphisms between Cw≤0 and Cw≥0[1].
(iv) Weight decompositions.
For any M ∈ ObjC there exists a distinguished triangle

B →M → A
f→ B[1] (3)

such that B ∈ Cw≤0, A ∈ Cw≥0[1].
II We de�ne Cw≥i, Cw≤i, Cw=i, C [i,j], bounded relative weight structures,

and Cb similarly to De�nition 1.2.1.
We will call the class Cw=0 the heart of w (we will not de�ne the category

Hw).
We will use the same notation for weight truncations with respect to w

as the one introduced in Remark 1.2.2. We de�ne weight-exact functors for
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relative weight structures as in De�nition 1.2.1(VI) (i.e., we do not mention
the corresponding F 's in the de�nition).

III Let H be a full subcategory of a triangulated C.
We will say that H is F -negative if ObjH ⊥ (∪i>1Obj(H[i])) and F kills

all morphisms between H and H[1].

Remark 3.5.2. 1. Any weight structure for C is a relative weight structure
with respect to F = 1C .

2. An F -weight structure is also a G ◦ F -weight structure for any exact
functor G : D → E (for any triangulated E). In particular, one can always
take F = 0. Hence we do not lose generality by adding the F -orthogonality
axiom to the de�nition of relative weight structures. Besides, those properties
of relative weight structures that do not depend on the choice of F are cer-
tainly valid without this axiom. The main reason to put the F -orthogonality
axiom together with the weak orthogonality one is that these conditions could
be tracked down using similar methods.

3. The weak orthogonality axiom is is a strengthening the higher Hom
decomposition condition that was studied in Appendix B of [Pos11]. In
particular, our Proposition 3.5.3(8) can be (more or less) easily deduced
from the results of ibid.

Now we will extend to relative weight structures several properties of
weight structures. We will skip those parts of the proofs that do not dif-
fer much from the ones in [Bon10a] (for 'usual' weight structures); we will
concentrate on the distinctions.

Proposition 3.5.3. Let F : C → D be an exact functor (of triangulated
categories).

In all assertions except (8) we will also assume that w is a relative weight
structure for C with respect to F .

1. (C1, C2) (C1, C2 ⊂ ObjC) de�ne an F -weight structure for C if and
only if (Cop

2 , C
op
1 ) de�ne a relative weight structure for Cop with respect

to F op; here F op : Cop → Dop is the functor obtained from F by invert-
ing all arrows.

2. All C [i,j] are extension-stable.

3. Let l ≥ m ∈ Z, M,M ′ ∈ ObjC. Let weight decompositions of M [−m]

and M ′[−l] be �xed; we consider the corresponding triangles w≤mM
b→

M
a→ w≥m+1M and w≤lM

′ b′→M ′ a′→ w≥l+1M
′.
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Then for any g ∈ C(M,M ′) there exists some morphism of distin-
guished triangles

F (w≤mM)
F (b)−−−→ F (M)

F (a)−−−→ F (w≥m+1M)y yF (g)

y
F (w≤lM

′)
F (b′)−−−→ F (M ′)

F (a′)−−−→ F (w≥l+1M
′)

(4)

4. In addition to the assumptions of the previous assertion, suppose that
l > m.

Then there also exists a morphism of triangles

w≤mM
b−−−→ M

a−−−→ w≥m+1M
f−−−→ w≤mM [1]yc yg yd yc[1]

w≤lM
′ b′−−−→ M ′ a′−−−→ w≥l+1M

′ f ′−−−→ w≤lM
′[1]

(5)

Moreover, (g, a, a′) determine F (d) uniquely; (g, b, b′) determine F (c)
uniquely.

5. For any M ∈ ObjC any choices of w≥iM (and of the arrows ai :
M → w≥iM for all i ∈ Z) can be completed to a weight Postnikov
tower for M (cf. De�nition 1.5.8 of [Bon10a]), i.e., for all j ∈ Z
we can choose some morphisms cj : w≥jM → w≥j+1M that are com-
patible with aj, aj+1, and for any choice of these cj we have: M j =
Cone(c−j(M))[j − 1] ∈ Cw=0.

6. For j0, j1 ∈ Z, we can choose a weight Postnikov tower for M such that
w≥jM = 0 for j > j1 and = M for j ≤ j0 if and only if M ∈ C [j0,j1].

We will call such a weight Postnikov tower a bounded one.

7. Let w be bounded, G be an exact functor C → C ′; suppose that C ′ is
endowed with a relative weight structure (with respect to some exact
functor F ′ : C ′ → D′).

Then G is left (resp. right) weight-exact if and only if G(Cw=0) ⊂ C ′w′≤0

(resp. G(Cw=0) ⊂ C ′w′≥0).

8. Let H ⊂ C be F -negative. Then there exists a bounded F -weight struc-
ture w on T = 〈H〉 in C such that ObjH ⊂ Tw=0.
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Proof. Assertions 1 and 2 are immediate from De�nition 3.5.1.
The proof of assertions 3 and 4 is similar to that of Proposition 1.5.1(1,2)

of [Bon10a]. The axiom (iii) of relative weight structures yields that the
composition morphism F (w≤mM)→ F (w≥l+1M

′) vanishes. Hence (an easy)
Proposition 1.1.9 of [BBD82] yields the existence of (4).

Similarly, we obtain the existence of (5) if m < l. Moreover, any two
distinct choices of d (resp. of c) are easily seen (see the proof of loc. cit.) to
di�er by s ◦ f (resp. by (f ′ ◦ s)[−1]) for some s ∈ C(w≤mM [1], w≥l+1M

′).
Since F (s) = 0 (by axiom (iii) of relative weight structures), we conclude the
proof of assertion 4.

The argument needed for the proof of assertion 5 is very similar to the
one used in the proof Theorem 2.2.1(11) of [Bon10b].

We put M ′ = M , l = j+ 1, m = j in assertion 4; this yields the existence
of some set of cj. Since Cw≥1−j is extension-stable, it contains Cone(c−j)

(for any choice of the latter). Completing the commutative triangle M
a−j→

w≥−jM
c−j→ w≥1−jM to an octahedral diagram (as was drawn in loc. cit.),

we obtain that Cone(cj−1) is also a cone of some morphism w≤−j−1M [1] →
w≤−jM [1]. Since Cw≤1−j is extension-stable also, we obtain assertion 5.

(6): If w≥j1+1M = 0 (resp. w≥j0M = M) then obviously M ∈ Cw≥j0
(resp. M ∈ Cw≤j1). Conversely, if M ∈ C [j0,j1], then nothing prevents us
from choosing w≥jM = 0 for all j > j1 and = M for all j ≤ j0.

(7): Certainly, if G left (resp. right) weight-exact then G(Cw=0) ⊂ C ′w′≤0

(resp. G(Cw=0) ⊂ C ′w′≥0). Conversely, let M ∈ Cw≤0 (resp. M ∈ Cw≥0). By
the previous assertion, M possesses a bounded weight Postnikov tower with
M i = 0 for i < 0 (resp. for i > 0). The structure of the tower yields that M
belongs to the envelope of M i[−i]; this concludes the proof of the assertion.

The proof of assertion 8 is similar to that of Theorem 4.3.2(II1) of [Bon10a]
(also, one can assume that F = 0 here). We take the envelope of H[i] for
i ≤ 0 (resp. for i ≥ 0) for Cw≤0 (resp. for Cw≥0; see the Notation). Obvi-
ously, Cw≤0 and Cw≥0 are Karoubi-closed, extension-stable, and satisfy the
condition (i) of De�nition 3.5.1(I). F -orthogonality of H easily yields con-
ditions (ii) and (iii) of loc. cit. It remains to verify that any object of C
possesses a weight decomposition with respect to w.

We de�ne a certain notion of complexity for objects of C. For M ∈
ObjH[i] (for some i ∈ Z) we will say that M has complexity ≤ 0. If there
exists a distinguished triangleM → N → O, andM,O are of complexity ≤ j
for some j ≥ 0 (they also could have smaller complexity) we will say that the
complexity of N is ≤ j + 1. Since any object of 〈H〉 has �nite complexity, it
su�ces to verify: for a distinguished triangle M → N → O if M,O possess
weight decompositions (with respect to our (Cw≤0, Cw≥0)), then N possesses
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a weight decomposition also.
By assertion 4, we can complete the morphism O[−1]→M to a commu-

tative square
(w≤0M)[−1] −−−→ O[−1]y y

w≤0M −−−→ M

Hence by the 3 × 3-Lemma (i.e., Proposition 1.1.11 of [BBD82]) we can
complete the distinguished triangleM → N → O to a commutative diagram

w≤0M −−−→ M −−−→ w≥1My y y
N ′ −−−→ N −−−→ N ′′y y y

w≤0O −−−→ O −−−→ w≥1O

(6)

whose rows and columns are distinguished triangles (cf. Lemma 1.5.4 of
[Bon10a]). We have N ′ ∈ Cw≤0, N

′′ ∈ Cw≥1 (by the de�nition of these
classes). Hence N possesses a weight decomposition indeed.

Remark 3.5.4. One can also glue relative weight structures similarly to Propo-
sition 1.2.3(13), and de�ne weight structures for 'pure' localizations as in part
(11) of loc. cit.

As above, for (any) contravariant H : C → A we denote H ◦ [−r] by Hr.

Proposition 3.5.5. I Let H be a cohomological functor, M ∈ ObjC. Fix
(any choice of) a bounded weight Postnikov tower for M (see Proposition
3.5.3(5)).

1. There exists a weight spectral sequence T with Epq
1 (T ) = Hq(M−p) =⇒

Ep+q
∞ (T ) = Hp+q(M) (cf. Proposition 3.3.1(II2)).
2. Denote the step of �ltration given by (El,m−l

1 : l ≥ k) on Hm(M) by
W kHm(M). Then

W kHm(M) = Im(Hm(w≥kM)→ Hm(M)). (7)

3. Suppose that a not necessarily cohomological H : C → A can be
factored through F . Then W kHm(M) (de�ned by the formula (7)) is C-
functorial in M (and does not depend on the choice of the corresponding
weight decompositions).

43



II Let F : C → D, F ′ : C ′ → D, and G : C → C ′ be exact functors.
Let w be an F -weight structure for C, w′ be an F ′-weight structure for C ′;
suppose that G is weight-exact.

1. G converts w-Postnikov towers into w′-Postnikov towers.
2. For any functor H ′ : C → A suppose that H ′ can be factored through

F ′. Then we have W kH ′m(G(−)) = W kHm(−) (here we de�ne the weight
�ltration via (7)).

Proof. I 1,2: Immediate from the standard properties of spectral sequences
coming from Postnikov towers; see the Exercises after �IV.2 of [GeM03].

3: This is an easy consequence of Proposition 3.5.3(3) (cf. the proof of
Proposition 2.1.2 of [Bon10a]). Indeed, the right hand side square in the
diagram (4) yields the existence of a commutative diagram

Hm(w≥kM
′) −−−→ Hm(M ′)y yHm(g)

Hm(w≥kM) −−−→ Hm(M)

(8)

Now, it su�ces to verify that for any g ∈ C(M,M ′) and for any choice of
w≥kM, w≥kM

′ we haveHm(g)(Im(Hm(w≥kM
′)→ Hm(M ′)) ⊂ Im(Hm(w≥kM)→

Hm(M); the latter is an immediate consequence of the existence of (8).
II 1. Obvious.
2. Immediate from assertions II1 and I3.

Remark 3.5.6. 1. Suppose that there exist t-structures tC for C and tD for D
such that F is t-exact. Suppose also that forM ∈ Ct=0 there exists a choice of
w≤0M and w≥1M belonging to Ht. Then the morphism F (M)→ F (w≥1M)

is epimorphic in HtD. It follows: for the functor H = H
tD,op
0 ◦ F the �rst

level of the weight �ltration of H(F ) = F (M) is just F (w≥1M). Here H
tD,op
0

is the zeroth homology with respect to t with values in the category opposite
to HtD (we invert the arrow in order to make the functor cohomological).
So, such weight truncations are 'F -functorial when they exist'; cf. Remark
1.5.2(2) and �8.6 of [Bon10a]. Hence the corresponding weight �ltrations are
functorial also.

2. Unfortunately, it seems that weight spectral sequences given by the
Proposition don't have to be canonical (in general).

3. Without losing any generality, one can assume that F = 0 in assertion
II2.
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3.6 On mixed complexes of sheaves over �nite �elds

Now let S = X0 be a variety over a �nite �eld Fq; let X denote X0 ×Spec Fq

Spec F, where F is the algebraic closure of Fq. Let F denote the exten-
sion of scalars functor DbShet(X0,Ql) → DbShet(X,Ql). We consider Het

Ql
:

DMc(X0)→ DbShet(X0,Ql) (cf. �3.4).

Proposition 3.6.1. 1. The category DSH = Db
m(X0,Ql)(⊂ DbShet(X0,Ql))

of mixed complexes of sheaves (see �5.1.5 of [BBD82]) can be endowed with
an F -weight structure wDSH such that DSHwDSH≤0 = Db

≤0(X0,Ql) (resp.
DSHwDSH≥0 = Db

≥0(X0,Ql)); here we use the notation from �5.1.8 of ibid.
The heart of wDSH is the class of pure complexes of sheaves of weight 0.

2. Het
Ql

can be factored through an exact H : DMc(X0) → DSH; H is a
weight-exact functor (with respect to wChow and wDSH).

Proof. 1. Proposition 5.1.14 of [BBD82] yields all axioms of F -weight struc-
tures in our situation except the existence of weight decompositions. So, by
Proposition 3.5.3(8), it su�ces to verify that the category of pure complexes
of sheaves of weight 0 (note that it is idempotent complete) generates DSH.
This is immediate from Theorem 5.3.5 of [BBD82].

2. The same arguments as in �3.4 (actually, a simpli�cation of those,
since we don't have to present S as a limit) easily yield the existence of H.
We also obtain that it is weight-exact by Proposition 3.5.3(7).

Remark 3.6.2. 1. In particular, we obtain that any object M of DSH pos-
sesses a weight Postnikov tower whose 'factors' are pure complexes of sheaves.

Besides, we obtain that for any (cohomological) G : DbShet(X,Ql)→ A,
H = G ◦ F ◦ Het

Ql
, the Chow-weight �ltration (see Remark 3.3.2) (W lH)(−)

can be described as (W l
wDSH

G ◦ F )(Het
Ql

(−)) (for any l ∈ Z; see Proposition
3.5.5(II2)).

Possibly, one could prove some more results of this sort via introducing a
'relative' analogue of the notion of transversal weight and t-structures (that
was introduced in �1 of [Bon12]); cf. also Remark 3.5.6(1).

2. So, it is no surprise that Theorem 2.2.1 is a motivic analogue of the
'stability properties' 5.1.14 of [BBD82].

A On the Chow t-structure and the virtual t-

truncations

In �A.1 we recall the notion of a t-structure adjacent to a weight structure
(as introduced in �4.4 of [Bon10a]).
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In �A.2 we use Theorem 4.5.2 of ibid. to prove the existence of the Chow
t-structure for DM(S) that is adjacent to the Chow weight structure for it
(cf. Theorem 2.1.1(II)); we also establish certain functoriality properties of
this t-structure (with respect to the motivic image functors, when S varies).

In �A.3 we recall the notion of virtual t-truncations (for cohomological
functors from DMc(S)), and relate virtual t-truncations with tChow.

A.1 On adjacent structures

We recall the notion of adjacent weight and t-structures (that was introduced
in �4.4 of [Bon10a]). For t-structures we will use notation and conventions
similar to those for weight structures in �1.2 (see also �4.1 of [Bon10a]). In
particular, we will denote the heart of t by Ht (recall that it is abelian);
ObjHt = Ct=0.

We will say that t (for C) is non-degenerate if ∩n∈ZCt≤n = ∩n∈ZCt≥n =
{0}.

De�nition A.1.1. We say that a weight structure w is (left) adjacent to a
t-structure t if Cw≥0 = Ct≤0.

We will also need the following properties of adjacent structures.

Proposition A.1.2. I Suppose that C is endowed with a weight structure w
and also with an adjacent t-structure t.

1. The functor C(−, Ht) : Ht→ AddFun(Hwop, Ab) that sends N ∈ Ct=0

toM 7→ C(M,N), (M ∈ Cw=0), is an exact embedding of Ht into the abelian
category AddFun(Hwop, Ab).

2. Assume that t is non-degenerate. Then Ct=0 = {M ∈ ObjC : Cw=i ⊥
M ∀ i 6= 0}.

II Moreover, let a triangulated category C ′ be endowed with a weight struc-
ture w′ and also with its adjacent t-structure t′. Let F : C → C ′ be an exact
functor.

1. F is right weight-exact if and only if it is right t-exact (i.e., if F (Ct≤0) ⊂
C ′t
′≤0).
2. Let G : C ′ → C be the right adjoint to F . Then F is right (resp. left)

weight-exact with respect to w and w′ if and only if G is left (resp. right)
t-exact with respect to t′ and t.

III Let D ⊂ C be a full subcategory of compact objects endowed with a
weight structure wD (we denote its heart by HwD). Suppose that C admits
arbitrary (small) coproducts and that D weakly generates C. Then the fol-
lowing statements are valid.
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1. For the weight structure w for C given by Proposition 1.2.3(12) there
exists an adjacent t-structure; it is non-degenerate. Ht is isomorphic to
AddFun(HwopD , Ab) (via the functor N 7→ (M ∈ DHwD=0 7→ C(M,N))).

2. Suppose that wD′ and D
′ ⊂ C ′ satisfy the conditions for wD and D ⊂ C

described above; denote the corresponding adjacent structures for C by w′ and
t′, respectively.

Let F : C → C ′ be an exact functor that maps D into D′; suppose that it
possesses a right adjoint G that maps D′ in D. Then the restriction of F to
D is right (resp. left) weight-exact with respect to wD and w′D′ if and only if

G is left (resp. right) t-exact with respect to t′ and t.

Proof. I These are just parts 4 and 5 of Theorem 4.4.2 of [Bon10a].
II1. Immediate from the de�nition of adjacent structures.
2. See Remark 4.4.6 of ibid.
III 1. Immediate from Theorem 4.5.2 of ibid.
2. Immediate from the previous assertions by adjunction (we use the

description of Ht).

A.2 The Chow t-structure for DM(S)

Now we study the t-structure adjacent to wbigChow.

Proposition A.2.1. I Let S be an excellent separated �nite-dimensional
scheme.

1. There exists a non-degenerate t-structure tChow(S) on DM(S) that
is adjacent to wbigChow (the latter is given either by Theorem 2.1.1(II) or by
Proposition 2.3.4(II)).

2. HtChow(S) ∼= AddFun(Chow(S)op, Ab) (via the functor N 7→ (M ∈
DMc(S)wChow=0 7→ DM(S)(M,N))).

II Let f : X → Y be a smoothly embeddable morphism of (excellent
separated �nite dimensional) schemes.

1. f ! and f∗ are right tChow-exact (with respect to the corresponding Chow
t-structures).

2. Suppose that f is smooth. Then f∗ is (also) tChow-exact.

Proof. I Immediate from the de�nition of wChow and wbigChow, and Proposition
A.1.2(I).

II The assertion follows easily from Proposition 2.3.5 (or from Theorem
2.2.1(II) if X and Y are reasonable); see Proposition A.1.2(III).
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Remark A.2.2. So, for any N ∈ ObjDM(S) the Chow t-structure for DM(S)
allows us to 'slice' the cohomology theory H : M 7→ DM(S)(M,N), into
'pieces' H i : M → DM(S)(M, tChow=iN); note that H i(N [j]) = {0} for any
N ∈ ObjChow(S) ⊂ ObjDMc(S), j 6= i (see Proposition A.1.2(I2)). One
may call these H i pure cohomology theories.

We will describe another (more general) method for slicing a cohomology
theory into 'pure pieces' below; yet this reasoning does not demonstrate that
the pieces of a representable cohomology theory are representable.

A.3 Virtual t-truncations with respect to wChow; 'pure'
cohomology theories

Now suppose that we are given an arbitrary cohomological functor H :
DMc(S) → A, A is an abelian category. Virtual t-truncations (de�ned in
�2.5 of [Bon10a] and studied in more detail in �2 of [Bon10b]) allow us to
'slice' H into pure pieces H i. To this end we only use wChow (and have no
need to put H into some 'category of cohomological functors' DMc(S)→ A,
and de�ne a t-structure for this category). Virtual t-truncations also yield a
functorial description of Chow-weight spectral sequences for cohomological
functors (starting from E2).

Now we just list the main properties of virtual t-truncations (in the case
when (C,w) = (DMc(S), wChow); the properties are the same as in the gen-
eral case).

Proposition A.3.1. Let H : DMc(S)→ A and i ∈ Z be �xed.
1. For any M ∈ ObjDMc(X) there exist unique morphisms i1(M) ∈

DMc(S)(wChow≤i−1M,wChow≤iM) and i2(M) ∈ DMc(S)(wChow≥iM,wChow≥i+1M)
that �t into a commutative diagram

wChow≤i−1M −−−→ M −−−→ wChow≥iMyi1(M)

yidM yi2(M)

wChow≤iM −−−→ M −−−→ wChow≥i+1M

(9)

here the horizontal arrows are compatible with (arbitrary �xed) weight de-
compositions of M [i− j] (for j = 0, 1).

2. The correspondences M 7→ ImH(i1(M)) and M 7→ ImH(i2(M)) yield
well-de�ned cohomological functors τ≥1−iH, τ≤−i−1H : DMc(S)→ A (we call
them virtual t-truncations of H).

3. For any i ∈ Z the functor τ≤iH kills DMc(S)wChow≤−i−1; τ≥iH kills
DMc(S)wChow≥1−i.
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4. H yields naturally an (in�nite) sequence of transformations of functors

· · · → (τ≥i+1H) ◦ [1]→ τ≤iH → H → τ≥i+1H → (τ≤iH) ◦ [−1]→ . . .

that yields a long exact sequence when applied to any M ∈ ObjDMc(S).
5. For any j ∈ Z we have a natural isomorphism τ≤i(τ≥jH) ∼= τ≥j(τ≤iH).
6. We have a natural isomorphism E−ii2 (T (H,M) ∼= τ=iH(= τ≥i(τ≤iH))

(see Proposition 3.3.1(II2) for the de�nition of T (H,M) in this case).
7. For N ∈ ObjDM(S), H = DMc(−, N) we have: τ≤iH ∼= (−, tChow≤iN),

τ≥iH ∼= (−, tChow≥iN), and τ=iH ∼= (−, tChow=iN).

Proof. Assertions 1�5 are immediate from Theorem 2.3.1 of [Bon10b]. As-
sertion 6 is contained in Theorem 2.4.2 of ibid. Assertion 7 follows from
Proposition 2.5.4 of ibid.

Remark A.3.2. 1. Note that τ=iH vanishes on DMc(S)wChow=j for all j 6= −i,
so τ=iH are 'pure' (cf. Remark A.2.2).

2. One can also describe the whole T (H,M) starting from E2 in terms of
(various) virtual t-truncations of H; see Theorem 2.4.2 of [Bon10b].

3. Our de�nition of τ≥iH and τ≤iH is compatible with the one of ibid. (if
one replaces the cohomological notation for weights in ibid. with our current
homological one), i.e., we do not change 'the signs' for virtual t-truncations.
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